Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Sci Total Environ ; 858(Pt 2): 159819, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36334671

RESUMO

Unintentional ingestion of metal-contaminated soils may pose a great threat to human health. To accurately evaluate the health risks of heavy metal(loid)s in soils, their bioaccessibility has been widely determined by in vitro assays and increasingly employed to optimize the assessment parameters. Given that, using meta-analysis, we analyzed the literature on farmland heavy metal(loid)s (As, Cd, Cr, Cu, Hg, Pb, Ni, and Zn) in Chinese main grain production regions, and collected their total and bioaccessibility data to accurately assess their human health risks. Monte Carlo simulation was used to reduce the uncertainty in metal concentration, intake rate, toxicity coefficient, and body weight. We found that the mean concentration (0.47 mg/kg) and geological accumulation index (Igeo, 0-5.24) of Cd were the priority position of controlling metals. Moreover, children are more vulnerable to carcinogenic risks than adults. Soil mineralogy, physicochemical properties, Fe, and the types of in vitro assays are the influencing factors of bioaccessibility discrepancy. Furthermore, appropriate bioaccessibility determination methods can be adapted according to the differences in ecological receptors for the risk assessment, like developing a "personalized assessment" scheme for polluted farmland soil management. Collectively, bioaccessibility-based models may provide an accurate and effective approach to human health risk assessment.


Assuntos
Metais Pesados , Poluentes do Solo , Criança , Adulto , Humanos , Solo/química , Poluentes do Solo/análise , Cádmio/análise , Monitoramento Ambiental/métodos , Metais Pesados/análise , China , Medição de Risco/métodos , Grão Comestível/química
2.
Sci Total Environ ; 803: 149864, 2022 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-34500282

RESUMO

Understanding the distribution of hyperaccumulators helps to implement more efficient phytoremediation strategies of contaminated sites, however, limited information is available. Here, we investigated the geographical distribution of the first-known arsenic-hyperaccumulator Pteris vittata in China and the key factors under two climate change scenarios (SSP 1-2.6 and SSP 5-8.5) at two time points (2030 and 2070). Species distribution model (MaxEnt) was applied to examine P. vittata distribution based on 399 samples from field surveys and existing specimen records. Further, among 23 environmental factors, 11 variables were used in the MaxEnt model, including temperature, precipitation, elevation, soil property, and UV-B radiation. The results show that P. vittata can grow in ~23% of the regions in China. Specifically, it is mainly distributed in 11 provinces of southern China, including Hainan, Guangdong, Guangxi, Yunnan, Guizhou, Hunan, Hubei, Jiangxi, Fujian, Zhejiang, and Jiangsu. Besides, eastern Sichuan, and southern Henan, Shaanxi, and Anhui are suitable for P. vittata growth. Under two climate change scenarios, P. vittata distribution in China would decrease by ~5.76-7.46 × 104 km2 in 2030 and ~3.22-4.68 × 104 km2 in 2070, with southern Henan and most Jiangsu being unsuitable for P. vittata growth. Among the 11 environmental variables, the minimum temperature of coldest month (bio6) and temperature annual range (bio7) are the two key factors limiting P. vittata distribution. At bio6 <-5 °C and/or bio7 >33 °C, the regions are unsuitable for P. vittata growth. Based on the MaxEnt model, precipitation had limited effects, so P. vittata can probably survive under both dry and moist environments. This study helps guide phytoremediation of As-polluted soils using P. vittata and provides an example to evaluate habitat suitability of hyperaccumulators at international scales.


Assuntos
Arsênio , Pteris , Poluentes do Solo , Arsênio/análise , Biodegradação Ambiental , China , Mudança Climática , Poluentes do Solo/análise
3.
Biosensors (Basel) ; 12(6)2022 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-35735525

RESUMO

In the context of accelerating the global realization of carbon peaking and carbon neutralization, biochar produced from biomass feedstock via a pyrolysis process has been more and more focused on by people from various fields. Biochar is a carbon-rich material with good properties that could be used as a carrier, a catalyst, and an absorbent. Such properties have made biochar a good candidate as a base material in the fabrication of electrochemical sensors or biosensors, like carbon nanotube and graphene. However, the study of the applications of biochar in electrochemical sensing technology is just beginning; there are still many challenges to be conquered. In order to better carry out this research, we reviewed almost all of the recent papers published in the past 5 years on biochar-based electrochemical sensors and biosensors. This review is different from the previously published review papers, in which the types of biomass feedstock, the preparation methods, and the characteristics of biochar were mainly discussed. First, the role of biochar in the fabrication of electrochemical sensors and biosensors is summarized. Then, the analytes determined by means of biochar-based electrochemical sensors and biosensors are discussed. Finally, the perspectives and challenges in applying biochar in electrochemical sensors and biosensors are provided.


Assuntos
Técnicas Biossensoriais , Grafite , Técnicas Biossensoriais/métodos , Carvão Vegetal , Técnicas Eletroquímicas/métodos , Grafite/química , Humanos
4.
Toxics ; 11(1)2022 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-36668757

RESUMO

The microbial treatment of soil has great potential to reduce chromium pollution. Here, an indigenous chromium-resistant Aspergillus niger strain (A1) was isolated and screened from heavily chromium-contaminated red soil in Yunnan Province, China using a traditional isolation method and a selective culture experiment. The molecular identification of A1 was achieved using 18S rRNA sequencing. The tolerance of the strain to toxic chromium was evaluated through pure laboratory culture. The adsorption effect and mechanism of A1 on chromium in red soil were further studied. The study concluded that A1 exhibited strong activity with exposure to 500 mg·L-1 Cr6+. Chromium adsorption by A. niger occurred mainly through intracellular metabolism, surface complexations with EPS, and chemical reduction with -C=C-, -OXuH, NH2, and -C=0. The optimized results showed that A1 had the best Cr6+ removal effect at pH 4, 40 °C, and a 60 h culture time. Compared with the inoculating of exogenous microbial agents, after inoculating A1 into the chromium-contaminated red soil, Cr6+ content was significantly reduced, and the high-toxicity chromium state (water-soluble and exchange states) decreased, whereas the low-toxicity chromium state (precipitation and residue states) increased. The results of red soil ITS also showed that the inoculation of indigenous microorganisms can better colonize the red soil. This study proves the feasibility of the application of indigenous A. niger to address red soil chromium pollution and provides a new idea and theoretical support for red soil remediation.

5.
Sci Total Environ ; 850: 157990, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-35963414

RESUMO

Replant problem is widespread in agricultural production and causes serious economic losses, which has limited sustainable cultivation of Panax notoginseng (PN), a well-known medicinal plant in Asia. Here we conducted a field experiment to investigate the effectiveness and possible mechanisms of biochar to improve its survival under continuous cropping. Biochar from tobacco stems was applied at 4 rates of 9.0, 12, 15, and 18 t/ha to a soil where PN has been continuously cultivated for 10 years. After 18 months, soil properties, 5 allelochemicals, including p-hydroxybenzoic acid, vanillic acid, syringic acid, p-coumaric acid, and ferulic acid, key pathogen Fusarium oxysporum, microbial community, and PN survival rate were investigated. Our results show that 10 years' continuous PN cropping led to soil acidification, accumulation of NH4+-N and F. oxysporum, and low PN survival rate. However, biochar increased its survival rate from 6.0% in the control to 69.5% under 15 t/ha treatment. Moreover, soil pH, available P and K, organic matter content, and microbial diversity were increased while NH4+-N and allelochemicals vanillic acid and syringic acid contents were decreased under biochar treatment (P<0.05). Soil available K increased from 177 to 283 mg·kg-1 while NH4+-N decreased from 6.73 to 4.79 mg·kg-1 under 15 t/ha treatment. Further, soil pH, available P and K, and microbial diversity (bacteria and fungi) were positively correlated with PN survival rate, however, NH4+-N content was negatively correlated (P<0.05). Our study indicates that biochar effectively increased the survival rate of Panax notoginseng under continuous cropping by improving soil properties and microbial diversity.


Assuntos
Panax notoginseng , Solo , Biodiversidade , Carvão Vegetal , Ácido Gálico/análogos & derivados , Panax notoginseng/microbiologia , Feromônios , Solo/química , Microbiologia do Solo , Ácido Vanílico
6.
Plant Divers ; 44(3): 271-278, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35769594

RESUMO

The synthesis of evolutionary biology and community ecology aims to understand how genetic variation within one species can shape community properties and how the ecological properties of a community can drive the evolution of a species. A rarely explored aspect is whether the interaction of genetic variation and community properties depends on the species' ecological role. Here we investigated the interactions among environmental factors, species diversity, and the within-species genetic diversity of species with different ecological roles. Using high-throughput DNA sequencing, we genotyped a canopy-dominant tree species, Parashorea chinensis, and an understory-abundant species, Pittosporopsis kerrii, from fifteen plots in Xishuangbanna tropical seasonal rainforest and estimated their adaptive, neutral and total genetic diversity; we also surveyed species diversity and assayed key soil nutrients. Structural equation modelling revealed that soil nitrogen availability created an opposing effect in species diversity and adaptive genetic diversity of the canopy-dominant Pa. chinensis. The increased adaptive genetic diversity of Pa. chinensis led to greater species diversity by promoting co-existence. Increased species diversity reduced the adaptive genetic diversity of the dominant understory species, Pi. kerrii, which was promoted by the adaptive genetic diversity of the canopy-dominant Pa. chinensis. However, such relationships were absent when neutral genetic diversity or total genetic diversity were used in the model. Our results demonstrated the important ecological interaction between adaptive genetic diversity and species diversity, but the pattern of the interaction depends on the identity of the species. Our results highlight the significant ecological role of dominant species in competitive interactions and regulation of community structure.

7.
Environ Pollut ; 268(Pt B): 115734, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33017745

RESUMO

Sediment serves as a sink for metals, thus it is critical to assess its contamination and associated risk. A typical riparian wetland close to a Zn-smelting operation in karst areas in southwest China was investigated. Sediment and reed plant (Phragmites australis) samples from wet and dry seasons were analyzed for total As, Cu, and Zn concentrations. Metal pollution in the sediment was assessed based on geoaccumulation index (Igeo). Further, metals in the sediment were fractionated into exchangeable, water and acid-soluble, reducible, oxidizable, and residual fractions based on the BCR sequential extraction. The results showed that the As, Cu, and Zn concentrations in the sediment were significantly higher than the background values (740-4081, 96-228, and 869-3331 vs. 10, 22, and 70 mg kg-1). With the Igeo being 10-17, the data indicate that the sediment was highly-polluted. While total As, Cu and Zn in the sediment increased from dry to wet season, their available concentrations decreased except Cu. With 62-94% of As, Cu, and Zn being in the residual fraction, metal availability in the sediment was low based on fractionation data. The data are consistent with low metal uptake by reed as their concentration ratios in plant roots to the sediment were 0.01-0.32. The results suggest that the riparian sediment was highly-polluted with As, Cu and Zn, but showing low metal availability and limited plant uptake.


Assuntos
Metais Pesados , Poluentes Químicos da Água , China , Monitoramento Ambiental , Sedimentos Geológicos , Metais Pesados/análise , Poluentes Químicos da Água/análise , Áreas Alagadas , Zinco
8.
RSC Adv ; 11(20): 12306-12314, 2021 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-35423743

RESUMO

Green leafy vegetables are economical and nutritious, but they may be contaminated with heavy metals. In this study, we assessed the total and bioaccessible concentrations of As, Cd, Pb and Cr in a popular vegetable cabbage (Brassica oleracea) from four major producing cities in Yunnan, Southwest China. With the mean concentrations of As, Cd, Pb and Cr being 0.24, 0.20, 0.32 and 1.28 mg kg-1, the As, Cd and Pb concentrations were within the limits of 0.2-0.5 mg kg-1 based on Chinese National Standards and the WHO/FAO, but Cr concentration was 2.6-times greater than the limit of 0.5 mg kg-1. Based on an in vitro bioaccessibility assay of the Solubility Bioaccessibility Research Consortium (SBRC), As bioaccessibility was the lowest at 11% while those of Cd, Pb and Cr were much greater at 68-87%. The estimated daily intake (EDI) of metals through cabbage ingestion was similar for children and adults. Among the four metals, only Cr's EDI at 2.29-1.87 exceeded 1 based on total and bioaccessible concentrations. The high Cr concentration at 1.28 mg kg-1 coupled with its high bioaccessibility at 67.5% makes Cr of concern in cabbage. However, human gastrointestinal cells exposed to the gastric digesta with high bioaccessible heavy metals and risky EDI, showed no obvious cytotoxicity, indicating that existing models based on total or bioaccessible heavy metals may overestimate their human health risk. Taken together, to accurately assess the human health risk of heavy metals in cabbage, both total/bioaccessible concentrations and the gastrointestinal cell responses should be considered.

9.
Sci Rep ; 11(1): 5656, 2021 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-33707597

RESUMO

Negative plant-soil feedbacks lead to the poor growth of Panax notoginseng (Sanqi), a well-known herb in Asia and has been used worldwide, under continuous cropping. However, the key soil parameters causing the replant problem are still unclear. Here we conducted a field experiment after 5-year continuous cropping. Sanqi seedlings were cultivated in 7 plots (1.5 m × 2 m), which were randomly assigned along a survival gradient. In total, 13 important soil parameters were measured to understand their relationship with Sanqi's survival. Pearson correlation analysis showed that 6 soil parameters, including phosphatase, urease, cellulase, bacteria/fungi ratio, available N, and pH, were all correlated with Sanqi's survival rate (P < 0.05). Principal component analysis (PCA) indicated that they explained 61% of the variances based on the first component, with soil pH being closely correlated with other parameters affecting Sanqi's survival. The optimum pH for Sanqi growth is about 6.5, but the mean soil pH in the study area is 5.27 (4.86-5.68), therefore it is possible to ameliorate the poor growth of Sanqi by increasing soil pH. This study may also help to reduce the replant problem of other crops under continuous cropping since it is widespread in agricultural production.

10.
Plant Divers ; 42(1): 1-6, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32140632

RESUMO

Functional trait variation of plant species includes both inter- and intraspecific variation; however, trait-based plant ecology generally considers only interspecific variation while ignoring intraspecific variation. One reason for this neglect is that intraspecific variation may be negligible when compared to interspecific variation; however, direct comparisons between inter- and intraspecific variation of plant species are lacking, especially in tropical forests. Here we investigated intraspecific leaf trait variation (leaf area, specific leaf area, leaf thickness, leaf density, leaf chlorophyll content) of Pittosporopsis kerrii Craib (Icacinaceae), the most abundant tree species in the Xishuangbanna tropical seasonal rainforest in southwestern China, along an elevational gradient (703-824 m). We found a substantial range of intraspecific variation in P. kerrii that was never less than 22.1% of range of the interspecific variation among 462 tree species reported before in the same community. Moreover, with increased elevation, both leaf thickness and density increased and specific leaf area decreased significantly. It could be more important for the individuals of P. kerrii to produce thicker and denser leaves to tolerate environmental stress (e.g. soil water availability) rather than having high growth rates at the places with higher elevation in the Xishuangbanna tropical seasonal rainforest.

11.
Chemosphere ; 251: 126334, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32169705

RESUMO

Soil contamination by heavy metals is widespread. Heavy metals of concern include As, Cd, Cu, Cr, Mn, Ni, Pb, and Zn. Hyperaccumulating plants are efficient in accumulating metals, which have potential to remediate metal-contaminated soils. Species of closely-related hyperaccumulating plants have been used to screen their ability in metal accumulation. However, there is limited evidence to show that closely-related plant species have similar ability in metal accumulation. Using a global database of 664 hyperaccumulating plants, we constructed a phylogeny of hyperaccumulating plants of As, Cd, Cu, Cr, Mn, Ni, Pb, and Zn. We evaluated the phylogenetic randomness of plants hyperaccumulating different metals by comparing the minimum number of trait-state changes across the phylogenetic tree to a null model. Based on the D value, we evaluated whether closely-related plants tend to accumulate similar metals. Based on the Blomberg's K and Pagel's λ, we tested whether closely-related plants have similar ability in metal accumulation. Excluding Cd and Pb, closely-related plant species tend to accumulate similar metal, however, its ability cannot be predicted based on phylogenetic relations except Ni. Therefore, we concluded that focusing on species of closely-related hyperaccumulating plants can help to screen new hyperaccumulators although their ability could be different.


Assuntos
Metais Pesados/metabolismo , Plantas/metabolismo , Poluentes do Solo/metabolismo , Cádmio , Chumbo , Metais Pesados/análise , Filogenia , Solo , Poluentes do Solo/análise , Zinco
12.
Sci Rep ; 6: 20652, 2016 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-26860815

RESUMO

A negative species-genetic diversity correlation (SGDC) could be predicted by the niche variation hypothesis, whereby an increase in species diversity within community reduces the genetic diversity of the co-occurring species because of the reduction in average niche breadth; alternatively, competition could reduce effective population size and therefore genetic diversity of the species within community. We tested these predictions within a 20 ha tropical forest dynamics plot (FDP) in the Xishuangbanna tropical seasonal rainforest. We established 15 plots within the FDP and investigated the soil properties, tree diversity, and genetic diversity of a common tree species Beilschmiedia roxburghiana within each plot. We observed a significant negative correlation between tree diversity and the genetic diversity of B. roxburghiana within the communities. Using structural equation modeling, we further determined that the inter-plot environmental characteristics (soil pH and phosphorus availability) directly affected tree diversity and that the tree diversity within the community determined the genetic diversity of B. roxburghiana. Increased soil pH and phosphorus availability might promote the coexistence of more tree species within community and reduce genetic diversity of B. roxburghiana for the reduced average niche breadth; alternatively, competition could reduce effective population size and therefore genetic diversity of B. roxburghiana within community.


Assuntos
Lauraceae/genética , Floresta Úmida , Solo/química , Variação Genética , Concentração de Íons de Hidrogênio , Lauraceae/crescimento & desenvolvimento , Fósforo/química , Estações do Ano , Especificidade da Espécie , Clima Tropical
13.
Ecol Evol ; 6(24): 8719-8726, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-28035263

RESUMO

The niche theory predicts that environmental heterogeneity and species diversity are positively correlated in tropical forests, whereas the neutral theory suggests that stochastic processes are more important in determining species diversity. This study sought to investigate the effects of soil nutrient (nitrogen and phosphorus) heterogeneity on tree species diversity in the Xishuangbanna tropical seasonal rainforest in southwestern China. Thirty-nine plots of 400 m2 (20 × 20 m) were randomly located in the Xishuangbanna tropical seasonal rainforest. Within each plot, soil nutrient (nitrogen and phosphorus) availability and heterogeneity, tree species diversity, and community phylogenetic structure were measured. Soil phosphorus heterogeneity and tree species diversity in each plot were positively correlated, while phosphorus availability and tree species diversity were not. The trees in plots with low soil phosphorus heterogeneity were phylogenetically overdispersed, while the phylogenetic structure of trees within the plots became clustered as heterogeneity increased. Neither nitrogen availability nor its heterogeneity was correlated to tree species diversity or the phylogenetic structure of trees within the plots. The interspecific competition in the forest plots with low soil phosphorus heterogeneity could lead to an overdispersed community. However, as heterogeneity increase, more closely related species may be able to coexist together and lead to a clustered community. Our results indicate that soil phosphorus heterogeneity significantly affects tree diversity in the Xishuangbanna tropical seasonal rainforest, suggesting that deterministic processes are dominant in this tropical forest assembly.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA