RESUMO
Leveraging AAVs' versatile tropism and labeling capacity, we expanded the scale of in vivo CRISPR screening with single-cell transcriptomic phenotyping across embryonic to adult brains and peripheral nervous systems. Through extensive tests of 86 vectors across AAV serotypes combined with a transposon system, we substantially amplified labeling efficacy and accelerated in vivo gene delivery from weeks to days. Our proof-of-principle in utero screen identified the pleiotropic effects of Foxg1, highlighting its tight regulation of distinct networks essential for cell fate specification of Layer 6 corticothalamic neurons. Notably, our platform can label >6% of cerebral cells, surpassing the current state-of-the-art efficacy at <0.1% by lentivirus, to achieve analysis of over 30,000 cells in one experiment and enable massively parallel in vivo Perturb-seq. Compatible with various phenotypic measurements (single-cell or spatial multi-omics), it presents a flexible approach to interrogate gene function across cell types in vivo, translating gene variants to their causal function.
Assuntos
Redes Reguladoras de Genes , Análise de Célula Única , Animais , Feminino , Humanos , Camundongos , Córtex Cerebral/metabolismo , Córtex Cerebral/citologia , Sistemas CRISPR-Cas/genética , Dependovirus/genética , Fatores de Transcrição Forkhead/metabolismo , Fatores de Transcrição Forkhead/genética , Vetores Genéticos/metabolismo , Camundongos Endogâmicos C57BL , Proteínas do Tecido Nervoso/metabolismo , Proteínas do Tecido Nervoso/genética , Neurônios/metabolismo , Neurônios/citologia , Análise de Célula Única/métodos , Transcriptoma/genética , Linhagem Celular , Transcrição GênicaRESUMO
Animals in the natural world constantly encounter geometrically complex landscapes. Successful navigation requires that they understand geometric features of these landscapes, including boundaries, landmarks, corners and curved areas, all of which collectively define the geometry of the environment1-12. Crucial to the reconstruction of the geometric layout of natural environments are concave and convex features, such as corners and protrusions. However, the neural substrates that could underlie the perception of concavity and convexity in the environment remain elusive. Here we show that the dorsal subiculum contains neurons that encode corners across environmental geometries in an allocentric reference frame. Using longitudinal calcium imaging in freely behaving mice, we find that corner cells tune their activity to reflect the geometric properties of corners, including corner angles, wall height and the degree of wall intersection. A separate population of subicular neurons encode convex corners of both larger environments and discrete objects. Both corner cells are non-overlapping with the population of subicular neurons that encode environmental boundaries. Furthermore, corner cells that encode concave or convex corners generalize their activity such that they respond, respectively, to concave or convex curvatures within an environment. Together, our findings suggest that the subiculum contains the geometric information needed to reconstruct the shape and layout of naturalistic spatial environments.
Assuntos
Meio Ambiente , Percepção de Forma , Hipocampo , Neurônios , Animais , Feminino , Masculino , Camundongos , Cálcio/análise , Cálcio/metabolismo , Percepção de Forma/fisiologia , Hipocampo/citologia , Hipocampo/fisiologia , Neurônios/metabolismo , Neurônios/fisiologia , Propriedades de SuperfícieRESUMO
Facioscapulohumeral muscular dystrophy (FSHD) is linked to abnormal derepression of the transcription activator DUX4. This effect is localized to a low percentage of cells, requiring single-cell analysis. However, single-cell/nucleus RNA-seq cannot fully capture the transcriptome of multinucleated large myotubes. To circumvent these issues, we use multiplexed error-robust fluorescent in situ hybridization (MERFISH) spatial transcriptomics that allows profiling of RNA transcripts at a subcellular resolution. We simultaneously examined spatial distributions of 140 genes, including 24 direct DUX4 targets, in in vitro differentiated myotubes and unfused mononuclear cells (MNCs) of control, isogenic D4Z4 contraction mutant and FSHD patient samples, as well as the individual nuclei within them. We find myocyte nuclei segregate into two clusters defined by the expression of DUX4 target genes, which is exclusively found in patient/mutant nuclei, whereas MNCs cluster based on developmental states. Patient/mutant myotubes are found in "FSHD-hi" and "FSHD-lo" states with the former signified by high DUX4 target expression and decreased muscle gene expression. Pseudotime analyses reveal a clear bifurcation of myoblast differentiation into control and FSHD-hi myotube branches, with variable numbers of DUX4 target-expressing nuclei found in multinucleated FSHD-hi myotubes. Gene coexpression modules related to extracellular matrix and stress gene ontologies are significantly altered in patient/mutant myotubes compared with the control. We also identify distinct subpathways within the DUX4 gene network that may differentially contribute to the disease transcriptomic phenotype. Taken together, our MERFISH-based study provides effective gene network profiling of multinucleated cells and identifies FSHD-induced transcriptomic alterations during myoblast differentiation.
Assuntos
Fibras Musculares Esqueléticas , Distrofia Muscular Facioescapuloumeral , Mioblastos , Análise de Célula Única , Transcriptoma , Distrofia Muscular Facioescapuloumeral/genética , Distrofia Muscular Facioescapuloumeral/patologia , Distrofia Muscular Facioescapuloumeral/metabolismo , Humanos , Mioblastos/metabolismo , Análise de Célula Única/métodos , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/patologia , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Diferenciação Celular/genética , Hibridização in Situ Fluorescente , Perfilação da Expressão Gênica/métodosRESUMO
Over the last decade, biology has begun utilizing 'big data' approaches, resulting in large, comprehensive atlases in modalities ranging from transcriptomics to neural connectomics. However, these approaches must be complemented and integrated with 'small data' approaches to efficiently utilize data from individual labs. Integration of smaller datasets with major reference atlases is critical to provide context to individual experiments, and approaches toward integration of large and small data have been a major focus in many fields in recent years. Here we discuss progress in integration of small data with consortium-sized atlases across multiple modalities, and its potential applications. We then examine promising future directions for utilizing the power of small data to maximize the information garnered from small-scale experiments. We envision that, in the near future, international consortia comprising many laboratories will work together to collaboratively build reference atlases and foundation models using small data methods.
Assuntos
Genômica , Humanos , Genômica/métodos , Big Data , Animais , Conectoma/métodos , Biologia Computacional/métodosRESUMO
Mutations that cause intellectual disability (ID) and autism spectrum disorder (ASD) are commonly found in genes that encode for synaptic proteins. However, it remains unclear how mutations that disrupt synapse function impact intellectual ability. In the SYNGAP1 mouse model of ID/ASD, we found that dendritic spine synapses develop prematurely during the early postnatal period. Premature spine maturation dramatically enhanced excitability in the developing hippocampus, which corresponded with the emergence of behavioral abnormalities. Inducing SYNGAP1 mutations after critical developmental windows closed had minimal impact on spine synapse function, whereas repairing these pathogenic mutations in adulthood did not improve behavior and cognition. These data demonstrate that SynGAP protein acts as a critical developmental repressor of neural excitability that promotes the development of life-long cognitive abilities. We propose that the pace of dendritic spine synapse maturation in early life is a critical determinant of normal intellectual development.
Assuntos
Transtornos Cognitivos/genética , Transtornos Cognitivos/metabolismo , Espinhas Dendríticas/metabolismo , Sinapses/metabolismo , Proteínas Ativadoras de ras GTPase/genética , Proteínas Ativadoras de ras GTPase/metabolismo , Animais , Modelos Animais de Doenças , Feminino , Haploinsuficiência , Hipocampo/embriologia , Hipocampo/metabolismo , Humanos , Masculino , Memória , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Rede Nervosa/metabolismoRESUMO
The subiculum (SUB), a hippocampal formation structure, is among the earliest brain regions impacted in Alzheimer's disease (AD). Toward a better understanding of AD circuit-based mechanisms, we mapped synaptic circuit inputs to dorsal SUB using monosynaptic rabies tracing in the 5xFAD mouse model by quantitatively comparing the circuit connectivity of SUB excitatory neurons in age-matched controls and 5xFAD mice at different ages for both sexes. Input-mapped brain regions include the hippocampal subregions (CA1, CA2, CA3), medial septum and diagonal band, retrosplenial cortex, SUB, postsubiculum (postSUB), visual cortex, auditory cortex, somatosensory cortex, entorhinal cortex, thalamus, perirhinal cortex (Prh), ectorhinal cortex, and temporal association cortex. We find sex- and age-dependent changes in connectivity strengths and patterns of SUB presynaptic inputs from hippocampal subregions and other brain regions in 5xFAD mice compared with control mice. Significant sex differences for SUB inputs are found in 5xFAD mice for CA1, CA2, CA3, postSUB, Prh, lateral entorhinal cortex, and medial entorhinal cortex: all of these areas are critical for learning and memory. Notably, we find significant changes at different ages for visual cortical inputs to SUB. While the visual function is not ordinarily considered defective in AD, these specific connectivity changes reflect that altered visual circuitry contributes to learning and memory deficits. Our work provides new insights into SUB-directed neural circuit mechanisms during AD progression and supports the idea that neural circuit disruptions are a prominent feature of AD.
Assuntos
Doença de Alzheimer , Raiva , Camundongos , Feminino , Masculino , Animais , Hipocampo , Córtex Entorrinal/fisiologia , Neurônios/fisiologiaRESUMO
The University of California Irvine (UCI) Center for Neural Circuit Mapping (CNCM) held its 4th annual Summer Conference entitled "Brain Cell Types, Circuits, and Disorders" at the Beckman Center of the National Academies of Science and Engineering in Irvine, California. Herein, we provide a Meeting Report highlighting the conference and the work of its attendees. The conference hosted 204 formal registrants from 41 diverse academic institutions and 6 industrial organizations in the US and internationally, with 78 accepted abstract submissions (including 25 invited talks, 7 special/selected short talks, 4 workshop lectures, and 42 poster presentations). The conference had six major sessions with the themes of 1) Brain Cell Types, Connectivity and Genomics, 2) Precision Brain Cell Access and Imaging, 3) Neural Circuits and Networks, 4) Brain Disorders, 5) Frontiers, New Concepts and Approaches, and 6) International Collaboration Program and Viral Vector Workshop. This year's conference continued to be highly successful, and we have opened up registration for our 2025 summer conference entitled "The Changing Brain".
RESUMO
The R47H missense mutation of the TREM2 gene is a known risk factor for development of Alzheimer's Disease. In this study, we analyze the impact of the Trem2R47H mutation on specific cell types in multiple cortical and subcortical brain regions in the context of wild-type and 5xFAD mouse background. We profile 19 mouse brain sections consisting of wild-type, Trem2R47H, 5xFAD and Trem2R47H; 5xFAD genotypes using MERFISH spatial transcriptomics, a technique that enables subcellular profiling of spatial gene expression. Spatial transcriptomics and neuropathology data are analyzed using our custom pipeline to identify plaque and Trem2R47H-induced transcriptomic dysregulation. We initially analyze cell type-specific transcriptomic alterations induced by plaque proximity. Next, we analyze spatial distributions of disease associated microglia and astrocytes, and how they vary between 5xFAD and Trem2R47H; 5xFAD mouse models. Finally, we analyze the impact of the Trem2R47H mutation on neuronal transcriptomes. The Trem2R47H mutation induces consistent upregulation of Bdnf and Ntrk2 across many cortical excitatory neuron types, independent of amyloid pathology. Spatial investigation of genotype enriched subclusters identified spatially localized neuronal subpopulations reduced in 5xFAD and Trem2R47H; 5xFAD mice. Overall, our MERFISH spatial transcriptomics analysis identifies glial and neuronal transcriptomic alterations induced independently by 5xFAD and Trem2R47H mutations, impacting inflammatory responses in microglia and astrocytes, and activity and BDNF signaling in neurons.
RESUMO
Comparisons and linkage between multiple imaging scales are essential for neural circuit connectomics. Here, we report 20 new recombinant rabies virus (RV) vectors that we have developed for multi-scale and multi-modal neural circuit mapping tools. Our new RV tools for mesoscale imaging express a range of improved fluorescent proteins. Further refinements target specific neuronal subcellular locations of interest. We demonstrate the discovery power of these new tools including the detection of detailed microstructural changes of rabies-labeled neurons in aging and Alzheimer's disease mouse models, live imaging of neuronal activities using calcium indicators, and automated measurement of infected neurons. RVs that encode GFP and ferritin as electron microscopy (EM) and fluorescence microscopy reporters are used for dual EM and mesoscale imaging. These new viral variants significantly expand the scale and power of rabies virus-mediated neural labeling and circuit mapping across multiple imaging scales in health and disease.
Assuntos
Neurônios , Vírus da Raiva , Animais , Camundongos , Neurônios/virologia , Neurônios/metabolismo , Encéfalo/virologia , Conectoma/métodos , Mapeamento Encefálico/métodos , Doença de Alzheimer/virologia , Doença de Alzheimer/patologia , Modelos Animais de Doenças , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Vetores Genéticos , Camundongos Endogâmicos C57BL , Microscopia de Fluorescência/métodos , Raiva/virologia , Humanos , Rede Nervosa/virologia , Rede Nervosa/metabolismoRESUMO
Autism spectrum disorder has been emerging as a growing public health threat. Early diagnosis of autism spectrum disorder is crucial for timely, effective intervention and treatment. However, conventional diagnosis methods based on communications and behavioral patterns are unreliable for children younger than 2 years of age. Given evidences of neurodevelopmental abnormalities in autism spectrum disorder infants, we resort to a novel deep learning-based method to extract key features from the inherently scarce, class-imbalanced, and heterogeneous structural MR images for early autism diagnosis. Specifically, we propose a Siamese verification framework to extend the scarce data, and an unsupervised compressor to alleviate data imbalance by extracting key features. We also proposed weight constraints to cope with sample heterogeneity by giving different samples different voting weights during validation, and used Path Signature to unravel meaningful developmental features from the two-time point data longitudinally. We further extracted machine learning focused brain regions for autism diagnosis. Extensive experiments have shown that our method performed well under practical scenarios, transcending existing machine learning methods and providing anatomical insights for autism early diagnosis.
Assuntos
Transtorno do Espectro Autista , Encéfalo , Aprendizado Profundo , Diagnóstico Precoce , Humanos , Transtorno do Espectro Autista/diagnóstico por imagem , Transtorno do Espectro Autista/diagnóstico , Lactente , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Imageamento por Ressonância Magnética/métodos , Pré-Escolar , Masculino , Feminino , Transtorno Autístico/diagnóstico , Transtorno Autístico/diagnóstico por imagem , Transtorno Autístico/patologia , Aprendizado de Máquina não SupervisionadoRESUMO
Brain extraction and image quality assessment are two fundamental steps in fetal brain magnetic resonance imaging (MRI) 3D reconstruction and quantification. However, the randomness of fetal position and orientation, the variability of fetal brain morphology, maternal organs around the fetus, and the scarcity of data samples, all add excessive noise and impose a great challenge to automated brain extraction and quality assessment of fetal MRI slices. Conventionally, brain extraction and quality assessment are typically performed independently. However, both of them focus on the brain image representation, so they can be jointly optimized to ensure the network learns more effective features and avoid overfitting. To this end, we propose a novel two-stage dual-task deep learning framework with a brain localization stage and a dual-task stage for joint brain extraction and quality assessment of fetal MRI slices. Specifically, the dual-task module compactly contains a feature extraction module, a quality assessment head and a segmentation head with feature fusion for simultaneous brain extraction and quality assessment. Besides, a transformer architecture is introduced into the feature extraction module and the segmentation head. We utilize a multi-step training strategy to guarantee a stable and successful training of all modules. Finally, we validate our method by a 5-fold cross-validation and ablation study on a dataset with fetal brain MRI slices in different qualities, and perform a cross-dataset validation in addition. Experiments show that the proposed framework achieves very promising performance.
Assuntos
Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Humanos , Gravidez , Feminino , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Cabeça , Feto/diagnóstico por imagemRESUMO
The fetal-to-adult hemoglobin switch is regulated in a developmental stage-specific manner and reactivation of fetal hemoglobin (HbF) has therapeutic implications for treatment of ß-thalassemia and sickle cell anemia, two major global health problems. Although significant progress has been made in our understanding of the molecular mechanism of the fetal-to-adult hemoglobin switch, the mechanism of epigenetic regulation of HbF silencing remains to be fully defined. Here, we performed whole-genome bisulfite sequencing and RNA sequencing analysis of the bone marrow-derived GYPA+ erythroid cells from ß-thalassemia-affected individuals with widely varying levels of HbF groups (HbF ≥ 95th percentile or HbF ≤ 5th percentile) to screen epigenetic modulators of HbF and phenotypic diversity of ß-thalassemia. We identified an ETS2 repressor factor encoded by ERF, whose promoter hypermethylation and mRNA downregulation are associated with high HbF levels in ß-thalassemia. We further observed that hypermethylation of the ERF promoter mediated by enrichment of DNMT3A leads to demethylation of γ-globin genes and attenuation of binding of ERF on the HBG promoter and eventually re-activation of HbF in ß-thalassemia. We demonstrated that ERF depletion markedly increased HbF production in human CD34+ erythroid progenitor cells, HUDEP-2 cell lines, and transplanted NCG-Kit-V831M mice. ERF represses γ-globin expression by directly binding to two consensus motifs regulating γ-globin gene expression. Importantly, ERF depletion did not affect maturation of erythroid cells. Identification of alterations in DNA methylation of ERF as a modulator of HbF synthesis opens up therapeutic targets for ß-hemoglobinopathies.
Assuntos
Epigênese Genética , Perfilação da Expressão Gênica , Proteínas Repressoras/deficiência , Proteínas Repressoras/genética , Talassemia beta/genética , gama-Globinas/genética , Animais , Antígenos CD34/metabolismo , Sequência de Bases , Sistemas CRISPR-Cas/genética , Diferenciação Celular , Linhagem Celular , Criança , DNA (Citosina-5-)-Metiltransferases/genética , Metilação de DNA , DNA Metiltransferase 3A , Células Precursoras Eritroides/citologia , Células Precursoras Eritroides/metabolismo , Feminino , Hemoglobina Fetal/genética , Edição de Genes , Humanos , Masculino , Camundongos , Regiões Promotoras Genéticas/genética , Reprodutibilidade dos Testes , Sulfitos , Sequenciamento Completo do Genoma , Talassemia beta/patologiaRESUMO
Fetal-to-adult hemoglobin switching is controlled by programmed silencing of γ-globin while the re-activation of fetal hemoglobin (HbF) is an effective strategy for ameliorating the clinical severity of ß-thalassemia and sickle cell disease. The identification of enhancer RNAs (eRNAs) related to the fetal (α2γ2) to adult hemoglobin (α2ß2) switching remains incomplete. In this study, the transcriptomes of GYPA+ cells from six ß-thalassemia patients with extreme HbF levels were sequenced to identify differences in patterns of noncoding RNA expression. It is interesting that an enhancer upstream of CHD4, an HbF-related core subunit of the NuRD complex, was differentially transcribed. We found a significantly positive correlation of eRNA-CHD4 enhancer-gene interaction using the public database of FANTOM5. Specifically, the eRNA-CHD4 expression was found to be significantly higher in both CD34+ HSPCs and HUDEP-2 than those in K562 cells which commonly expressed high level of HbF, suggesting a correlation between eRNA and HbF expression. Furthermore, prediction of transcription binding sites of cis-eQTLs and the CHD4 genomic region revealed a putative interaction site between rs73264846 and ZNF410, a known transcription factor regulating HbF expression. Moreover, in-vitro validation showed that the inhibition of eRNA could reduce the expression of HBG expression in HUDEP-2 cells. Taken together, the findings of this study demonstrate that a distal enhancer contributes to stage-specific silencing of γ-globin genes through direct modulation of CHD4 expression and provide insights into the epigenetic mechanisms of NuRD-mediated hemoglobin switching.
Assuntos
Anemia Falciforme , Talassemia beta , Adulto , Humanos , Hemoglobina Fetal/genética , Hemoglobina Fetal/metabolismo , gama-Globinas/genética , gama-Globinas/metabolismo , Talassemia beta/genética , Regulação da Expressão Gênica , Anemia Falciforme/genética , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/genética , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase/metabolismoRESUMO
The study of Alzheimer's Disease (AD) has traditionally focused on neuropathological mechanisms that has guided therapies that attenuate neuropathological features. A new direction is emerging in AD research that focuses on the progressive loss of cognitive function due to disrupted neural circuit mechanisms. Evidence from humans and animal models of AD show that dysregulated circuits initiate a cascade of pathological events that culminate in functional loss of learning, memory, and other aspects of cognition. Recent progress in single-cell, spatial, and circuit omics informs this circuit-focused approach by determining the identities, locations, and circuitry of the specific cells affected by AD. Recently developed neuroscience tools allow for precise access to cell type-specific circuitry so that their functional roles in AD-related cognitive deficits and disease progression can be tested. An integrated systems-level understanding of AD-associated neural circuit mechanisms requires new multimodal and multi-scale interrogations that longitudinally measure and/or manipulate the ensemble properties of specific molecularly-defined neuron populations first susceptible to AD. These newly developed technological and conceptual advances present new opportunities for studying and treating circuits vulnerable in AD and represent the beginning of a new era for circuit-based AD research.
Assuntos
Doença de Alzheimer , Transtornos Cognitivos , Animais , Humanos , Doença de Alzheimer/patologia , Aprendizagem , Cognição , Neurônios/patologiaRESUMO
Inhibitory interneurons are crucial to brain function and their dysfunction is implicated in neuropsychiatric conditions. Emerging evidence indicates that cholecystokinin (CCK)-expressing interneurons (CCK+) are highly heterogenous. We find that a large subset of parvalbumin-expressing (PV+) interneurons express CCK strongly; between 40 and 56% of PV+ interneurons in mouse hippocampal CA1 express CCK. Primate interneurons also exhibit substantial PV/CCK co-expression. Mouse PV+/CCK+ and PV+/CCK- cells show distinguishable electrophysiological and molecular characteristics. Analysis of single nuclei RNA-seq and ATAC-seq data shows that PV+/CCK+ cells are a subset of PV+ cells, not of synuclein gamma positive (SNCG+) cells, and that they strongly express oxidative phosphorylation (OXPHOS) genes. We find that mitochondrial complex I and IV-associated OXPHOS gene expression is strongly correlated with CCK expression in PV+ interneurons at both the transcriptomic and protein levels. Both PV+ interneurons and dysregulation of OXPHOS processes are implicated in neuropsychiatric conditions, including autism spectrum (ASD) disorder and schizophrenia (SCZ). Analysis of human brain samples from patients with these conditions shows alterations in OXPHOS gene expression. Together these data reveal important molecular characteristics of PV-CCK co-expressing interneurons and support their implication in neuropsychiatric conditions.
RESUMO
The hippocampal formation (HF) is well documented as having a feedforward, unidirectional circuit organization termed the trisynaptic pathway. This circuit organization exists along the septotemporal axis of the HF, but the circuit connectivity across septal to temporal regions is less well described. The emergence of viral genetic mapping techniques enhances our ability to determine the detailed complexity of HF circuitry. In earlier work, we mapped a subiculum (SUB) back projection to CA1 prompted by the discovery of theta wave back propagation from the SUB to CA1 and CA3. We reason that this circuitry may represent multiple extended noncanonical pathways involving the subicular complex and hippocampal subregions CA1 and CA3. In the present study, multiple retrograde viral tracing approaches produced robust mapping results, which supports this prediction. We find significant noncanonical synaptic inputs to dorsal hippocampal CA3 from ventral CA1 (vCA1), perirhinal cortex (Prh), and the subicular complex. Thus, CA1 inputs to CA3 run opposite the trisynaptic pathway and in a temporal to septal direction. Our retrograde viral tracing results are confirmed by anterograde-directed viral mapping of projections from input mapped regions to hippocampal dorsal CA3 (dCA3). We find that genetic inactivation of the projection of vCA1 to dCA3 impairs object-related spatial learning and memory but does not modulate anxiety-related behaviors. Our data provide a circuit foundation to explore novel functional roles contributed by these noncanonical hippocampal circuit connections to hippocampal circuit dynamics and learning and memory behaviors.
Assuntos
Região CA3 Hipocampal/fisiologia , Memória/fisiologia , Aprendizagem Espacial/fisiologia , Animais , Encéfalo/fisiologia , Mapeamento Encefálico/métodos , Região CA1 Hipocampal/fisiologia , Região CA3 Hipocampal/metabolismo , Hipocampo/fisiologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Vias Neurais/fisiologia , Córtex Perirrinal/fisiologiaRESUMO
Psychedelic drugs have reemerged as tools to treat several brain disorders. Cultural attitudes toward them are changing, and scientists are once again investigating the neural mechanisms through which these drugs impact brain function. The significance of this research direction is reflected by recent work, including work presented by these authors at the 2022 meeting of the Society for Neuroscience. As of 2022, there were hundreds of clinical trials recruiting participants for testing the therapeutic effects of psychedelics. Emerging evidence suggests that psychedelic drugs may exert some of their long-lasting therapeutic effects by inducing structural and functional neural plasticity. Herein, basic and clinical research attempting to elucidate the mechanisms of these compounds is showcased. Topics covered include psychedelic receptor binding sites, effects of psychedelics on gene expression, and on dendrites, and psychedelic effects on microcircuitry and brain-wide circuits. We describe unmet clinical needs and the current state of translation to the clinic for psychedelics, as well as other unanswered basic neuroscience questions addressable with future studies.
Assuntos
Alucinógenos , Neurociências , Humanos , Alucinógenos/farmacologia , Alucinógenos/uso terapêutico , Encéfalo , Plasticidade NeuronalRESUMO
A key challenge in developing diagnosis and treatments for Alzheimer's disease (AD) is to detect abnormal network activity at as early a stage as possible. To date, behavioral and neurophysiological investigations in AD model mice have yet to conduct a longitudinal assessment of cellular pathology, memory deficits, and neurophysiological correlates of neuronal activity. We therefore examined the temporal relationships between pathology, neuronal activities and spatial representation of environments, as well as object location memory deficits across multiple stages of development in the 5xFAD mice model and compared these results to those observed in wild-type mice. We performed longitudinal in vivo calcium imaging with miniscope on hippocampal CA1 neurons in behaving mice. We find that 5xFAD mice show amyloid plaque accumulation, depressed neuronal calcium activity during immobile states, and degenerate and unreliable hippocampal neuron spatial tuning to environmental location at early stages by 4 months of age while their object location memory (OLM) is comparable to WT mice. By 8 months of age, 5xFAD mice show deficits of OLM, which are accompanied by progressive degradation of spatial encoding and, eventually, impaired CA1 neural tuning to object-location pairings. Furthermore, depressed neuronal activity and unreliable spatial encoding at early stage are correlated with impaired performance in OLM at 8-month-old. Our results indicate the close connection between impaired hippocampal tuning to object-location and the presence of OLM deficits. The results also highlight that depressed baseline firing rates in hippocampal neurons during immobile states and unreliable spatial representation precede object memory deficits and predict memory deficits at older age, suggesting potential early opportunities for AD detecting.
Assuntos
Doença de Alzheimer , Camundongos , Animais , Doença de Alzheimer/metabolismo , Cálcio/metabolismo , Camundongos Transgênicos , Neurônios/metabolismo , Transtornos da Memória/etiologia , Transtornos da Memória/metabolismo , Hipocampo/metabolismo , Modelos Animais de DoençasRESUMO
Identification of α-thalassemia silent carriers is challenging with conventional phenotype-based screening methods. A liquid chromatography tandem mass spectrometry (LC-MS/MS)-based approach may offer novel biomarkers to address this conundrum. In this study, we collected dried blood spot samples from individuals with three α-thalassemia subtypes for biomarker discovery and validation. We observed differential expression patterns of hemoglobin subunits among various α-thalassemia subtypes and normal controls through proteomic profiling of 51 samples in the discovery phase. Then, we developed and optimized a multiple reaction monitoring (MRM) assay to measure all detectable hemoglobin subunits. The validation phase was conducted in a cohort of 462 samples. Among the measured hemoglobin subunits, subunit µ was significantly upregulated in all the α-thalassemia groups with distinct fold changes. The hemoglobin subunit µ exhibits great potential as a novel biomarker for α-thalassemia, especially for silent α-thalassemia. We constructed predictive models based on the concentrations of hemoglobin subunits and their ratios to classify the various subtypes of α-thalassemia. In the binary classification problems of silent α-thalassemia vs normal, non-deletional α-thalassemia vs normal, and deletional α-thalassemia vs normal, the best performance of the models achieved average ROCAUCs of 0.9505, 0.9430, and 0.9976 in the cross-validation, respectively. In the multiclass model, the best performance achieved an average ROCAUC of 0.9290 in cross-validation. The performance of our MRM assay and models demonstrated that the hemoglobin subunit µ would play a vital role in screening silent α-thalassemia in clinical practice.
Assuntos
Subunidades de Hemoglobina , Talassemia alfa , Humanos , Cromatografia Líquida , Espectrometria de Massas em Tandem/métodos , Talassemia alfa/diagnóstico , Proteômica , BiomarcadoresRESUMO
BACKGROUND: Cerebral microhemorrhages (CMH) are associated with stroke, cognitive decline, and normal aging. Our previous study shows that the interaction between oxidatively stressed red blood cells (RBC) and cerebral endothelium may underlie CMH development. However, the real-time examination of altered RBC-brain endothelial interactions in vivo, and their relationship with clearance of stalled RBC, microglial responses, and CMH development, has not been reported. METHODS: RBC were oxidatively stressed using tert-butylhydroperoxide (t-BHP), fluorescently labeled and injected into adult Tie2-GFP mice. In vivo two-photon imaging and ex vivo confocal microscopy were used to evaluate the temporal profile of RBC-brain endothelial interactions associated with oxidatively stressed RBC. Their relationship with microglial activation and CMH was examined with post-mortem histology. RESULTS: Oxidatively stressed RBC stall significantly and rapidly in cerebral vessels in mice, accompanied by decreased blood flow velocity which recovers at 5 days. Post-mortem histology confirms significantly greater RBC-cerebral endothelial interactions and microglial activation at 24 h after t-BHP-treated RBC injection, which persist at 7 days. Furthermore, significant CMH develop in the absence of blood-brain barrier leakage after t-BHP-RBC injection. CONCLUSIONS: Our in vivo and ex vivo findings show the stalling and clearance of oxidatively stressed RBC in cerebral capillaries, highlighting the significance of microglial responses and altered RBC-brain endothelial interactions in CMH development. Our study provides novel mechanistic insight into CMH associated with pathological conditions with increased RBC-brain endothelial interactions.