Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 216
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Immunol ; 25(2): 282-293, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38172257

RESUMO

Preserving cells in a functional, non-senescent state is a major goal for extending human healthspans. Model organisms reveal that longevity and senescence are genetically controlled, but how genes control longevity in different mammalian tissues is unknown. Here, we report a new human genetic disease that causes cell senescence, liver and immune dysfunction, and early mortality that results from deficiency of GIMAP5, an evolutionarily conserved GTPase selectively expressed in lymphocytes and endothelial cells. We show that GIMAP5 restricts the pathological accumulation of long-chain ceramides (CERs), thereby regulating longevity. GIMAP5 controls CER abundance by interacting with protein kinase CK2 (CK2), attenuating its ability to activate CER synthases. Inhibition of CK2 and CER synthase rescues GIMAP5-deficient T cells by preventing CER overaccumulation and cell deterioration. Thus, GIMAP5 controls longevity assurance pathways crucial for immune function and healthspan in mammals.


Assuntos
Ceramidas , Proteínas de Ligação ao GTP , Animais , Humanos , Longevidade/genética , Células Endoteliais/metabolismo , Mamíferos/metabolismo
2.
Nat Immunol ; 20(3): 350-361, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30718914

RESUMO

Despite the known importance of zinc for human immunity, molecular insights into its roles have remained limited. Here we report a novel autosomal recessive disease characterized by absent B cells, agammaglobulinemia and early onset infections in five unrelated families. The immunodeficiency results from hypomorphic mutations of SLC39A7, which encodes the endoplasmic reticulum-to-cytoplasm zinc transporter ZIP7. Using CRISPR-Cas9 mutagenesis we have precisely modeled ZIP7 deficiency in mice. Homozygosity for a null allele caused embryonic death, but hypomorphic alleles reproduced the block in B cell development seen in patients. B cells from mutant mice exhibited a diminished concentration of cytoplasmic free zinc, increased phosphatase activity and decreased phosphorylation of signaling molecules downstream of the pre-B cell and B cell receptors. Our findings highlight a specific role for cytosolic Zn2+ in modulating B cell receptor signal strength and positive selection.


Assuntos
Agamaglobulinemia/imunologia , Linfócitos B/imunologia , Proteínas de Transporte de Cátions/imunologia , Zinco/imunologia , Agamaglobulinemia/genética , Agamaglobulinemia/metabolismo , Animais , Linfócitos B/metabolismo , Proteínas de Transporte de Cátions/deficiência , Proteínas de Transporte de Cátions/genética , Pré-Escolar , Citosol/imunologia , Citosol/metabolismo , Modelos Animais de Doenças , Retículo Endoplasmático/imunologia , Retículo Endoplasmático/metabolismo , Feminino , Perfilação da Expressão Gênica , Humanos , Lactente , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mutação , Linhagem , Zinco/metabolismo
4.
Environ Res ; 247: 118201, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38220074

RESUMO

N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine-quinone (6PPD-quinone) has received extensive attention due to its ubiquitous distribution and potential toxicity. However, the distribution characteristics of 6PPD-quinone in dust from e-waste recycling areas and the consequential health risks to children are unclear. A total of 183 dust samples were collected from roads (n = 40), homes (n = 91), and kindergartens (n = 52) in Guiyu (the e-waste-exposed group) and Haojiang (the reference group) from 2019 to 2021. The results show that the concentrations of 6PPD-quinone in kindergarten and house dust from the exposed group were significantly higher than those from the reference group (P < 0.001). These findings show that e-waste may be another potential source of 6PPD-quinone, in addition to rubber tires. The exposure risk of 6PPD-quinone in children was assessed using their daily intake. The daily intake of 925 kindergarten children was calculated using the concentration of 6PPD-quinone in kindergarten dust. The daily intake of 6PPD-quinone via ingestion was approximately five orders of magnitude higher than via inhalation. Children in the exposed group had a higher exposure risk to 6PPD-quinone than the reference group. A higher daily intake of 6PPD-quinone from kindergarten dust was associated with a lower BMI and a higher frequency of influenza and diarrhea in children. This study reports the distribution of 6PPD-quinone in an e-waste recycling town and explores the associated health risks to children.


Assuntos
Benzoquinonas , Exposição Ambiental , Influenza Humana , Criança , Humanos , Influenza Humana/epidemiologia , Índice de Massa Corporal , Poeira , Quinonas , Diarreia/induzido quimicamente , Diarreia/epidemiologia
5.
Ecotoxicol Environ Saf ; 276: 116287, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38579532

RESUMO

Benzo(a)pyrene (BaP) can be detected in the human placenta. However, little is known about the effects of BaP exposure on different placental cells under various conditions. In this study, we aimed to investigate the effects of BaP on mitochondrial function, pyrin domain-containing protein 3 (NLRP3) inflammasome, and apoptosis in three human trophoblast cell lines under normoxia, hypoxia, and inflammatory conditions. JEG-3, BeWo, and HTR-8/SVneo cell lines were exposed to BaP under normoxia, hypoxia, or inflammatory conditions for 24 h. After treatment, we evaluated cell viability, apoptosis, aryl hydrocarbon receptor (AhR) protein and cytochrome P450 (CYP) gene expression, mitochondrial function, including mitochondrial DNA copy number (mtDNAcn), mitochondrial membrane potential (ΔΨm), intracellular adenosine triphosphate (iATP), and extracellular ATP (eATP), nitric oxide (NO), NLPR3 inflammasome proteins, and interleukin (IL)-1ß. We found that BaP upregulated the expression of AhR or CYP genes to varying degrees in all three cell lines. Exposure to BaP alone increased ΔΨm in all cell lines but decreased NO in BeWo and HTR-8/SVneo, iATP in HTR-8/SVneo, and cell viability in JEG-3, without affecting apoptosis. Under hypoxic conditions, BaP did not increase the expression of AhR and CYP genes in JEG-3 cells but increased CYP gene expression in two others. Pro-inflammatory conditions did not affect the response of the 3 cell lines to BaP with respect to the expression of CYP genes and changes in the mitochondrial function and NLRP3 inflammasome proteins. In addition, in HTR-8/SVneo cells, BaP increased IL-1ß secretion in the presence of hypoxia and poly(I:C). In conclusion, our results showed that BaP affected mitochondrial function in trophoblast cell lines by increasing ΔΨm. This increased ΔΨm may have rescued the trophoblast cells from activation of the NLRP3 inflammasome and apoptosis after BaP treatment. We also observed that different human trophoblast cell lines had cell type-dependent responses to BaP exposure under normoxia, hypoxia, or pro-inflammatory conditions.


Assuntos
Apoptose , Benzo(a)pireno , Sobrevivência Celular , Proteína 3 que Contém Domínio de Pirina da Família NLR , Placenta , Receptores de Hidrocarboneto Arílico , Trofoblastos , Humanos , Benzo(a)pireno/toxicidade , Placenta/efeitos dos fármacos , Placenta/citologia , Linhagem Celular , Feminino , Gravidez , Apoptose/efeitos dos fármacos , Trofoblastos/efeitos dos fármacos , Trofoblastos/metabolismo , Receptores de Hidrocarboneto Arílico/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Inflamassomos/efeitos dos fármacos , Inflamassomos/metabolismo , Mitocôndrias/efeitos dos fármacos , Inflamação/induzido quimicamente , Hipóxia Celular/efeitos dos fármacos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Sistema Enzimático do Citocromo P-450/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética
6.
Environ Geochem Health ; 46(8): 296, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38980420

RESUMO

Fine particular matter (PM2.5) and lead (Pb) exposure can induce insulin resistance, elevating the likelihood of diabetes onset. Nonetheless, the underlying mechanism remains ambiguous. Consequently, we assessed the association of PM2.5 and Pb exposure with insulin resistance and inflammation biomarkers in children. A total of 235 children aged 3-7 years in a kindergarten in e-waste recycling areas were enrolled before and during the Corona Virus Disease 2019 (COVID-19) lockdown. Daily PM2.5 data was collected and used to calculate the individual PM2.5 daily exposure dose (DED-PM2.5). Concentrations of whole blood Pb, fasting blood glucose, serum insulin, and high mobility group box 1 (HMGB1) in serum were measured. Compared with that before COVID-19, the COVID-19 lockdown group had lower DED-PM2.5 and blood Pb, higher serum HMGB1, and lower blood glucose and homeostasis model assessment of insulin resistance (HOMA-IR) index. Decreased DED-PM2.5 and blood Pb levels were linked to decreased levels of fasting blood glucose and increased serum HMGB1 in all children. Increased serum HMGB1 levels were linked to reduced levels of blood glucose and HOMA-IR. Due to the implementation of COVID-19 prevention and control measures, e-waste dismantling activities and exposure levels of PM2.5 and Pb declined, which probably reduced the association of PM2.5 and Pb on insulin sensitivity and diabetes risk, but a high level of risk of chronic low-grade inflammation remained. Our findings add new evidence for the associations among PM2.5 and Pb exposure, systemic inflammation and insulin resistance, which could be a possible explanation for diabetes related to environmental exposure.


Assuntos
COVID-19 , Resíduo Eletrônico , Exposição Ambiental , Resistência à Insulina , Chumbo , Material Particulado , Humanos , Criança , Chumbo/sangue , COVID-19/sangue , COVID-19/epidemiologia , Pré-Escolar , Masculino , Feminino , Glicemia/análise , Inflamação/sangue , Reciclagem , Proteína HMGB1/sangue , Insulina/sangue , Poluentes Atmosféricos , SARS-CoV-2
7.
Angew Chem Int Ed Engl ; 63(25): e202403187, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38501218

RESUMO

Low capacity and poor cycle stability greatly inhibit the development of zinc-iodine batteries. Herein, a high-performance Zn-iodine battery has been reached by designing and optimizing both electrode and electrolyte. The Br- is introduced as the activator to trigger I+, and coupled with I+ forming interhalogen to stabilize I+ to achieve a four-electron reaction, which greatly promotes the capacity. And the Ni-Fe-I LDH nanoflowers serve as the confinement host to enable the reactions of I-/I+ occurring in the layer due to the spacious and stable interlayer spacing of Ni-Fe-I LDH, which effectively suppresses the iodine-species shuttle ensuring high cycling stability. As a result, the electrochemical performance is greatly enhanced, especially in specific capacity (as high as 350 mAh g-1 at 1 A g-1 far higher than two-electron transfer Zn-iodine batteries) and cycling performance (94.6 % capacity retention after 10000 cycles). This strategy provides a new way to realize high capacity and long-term stability of Zn-iodine batteries.

8.
Angew Chem Int Ed Engl ; : e202409774, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38953785

RESUMO

Anionic chemistry modulation represents a promising avenue to enhance the electrochemical performance and unlock versatile applications in cutting-edge energy storage devices. Herein, we propose a methodology that involves anionic chemistry of carbonate anions to tailor the electrochemical oxidation-reduction reactions of bismuth (Bi) electrodes, where the conversion energy barrier for Bi (0) to Bi (III) has been significantly reduced, endowing anionic full batteries with enhanced electrochemical kinetics and chemical self-charging property. The elaborately designed batteries with an air-switch demonstrate rapid self-recharging capabilities, recovering over 80% of the electrochemical full charging capacity within a remarkably short timeframe of 1 hour and achieving a cumulative self-charging capacity of 5 Ah g-1. The aqueous self-charging battery strategy induced by carbonate anion, as proposed in this study, holds the potential for extending to various anionic systems, including seawater-based Cl- ion batteries. This work offers a universal framework for advancing next-generation multi-functional power sources.

9.
Small ; 19(48): e2304482, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37571831

RESUMO

The spinel Mn-based cathodes with 3D Li+ diffusion channels, high voltage, and low-cost show promise for developing high-power lithium-ion batteries (LIBs). But the disproportionation and Jahn-Teller distortion lead to structural degeneration and capacity decay, especially at high working temperatures. Herein, considering the merits of single crystals and orientation of exposed crystal planes, single-crystal truncated octahedral LiMn2 O4 (TO-LMO) with exposed {111}, {100} and {110} facets is rationally designed, in which the mainly exposed {111} facets are truncated by a small portion of {100} and {110} facets. The Li-deficient intermediate phase is innovatively proposed to prepare the single-crystal TO-LMO. The synergistic effects of single crystals and the orientation of exposed crystal planes significantly reduce the disproportionation of Mn3+ ions and thereby improve their structural stability. Consequently, the cycling stability of the single-crystal TO-LMO is remarkably enhanced, obtaining outstanding capacity retention of 84.3% after 2000 cycles, much better than that of 61.2% for octahedral LiMn2 O4 . The feasibility of preparing single-crystal truncated octahedral LiNi0.5 Mn1.5 O4 with exposed {111}, {100}, and {110} facets via the Li-deficient intermediate phase is further demonstrated. These findings offer new insight into regulating the orientation of exposed crystal planes and improving the reversibility of Mn-based redox couples in LIBs.

10.
Proc Natl Acad Sci U S A ; 117(7): 3718-3727, 2020 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-32019891

RESUMO

Developing B cells can be positively or negatively selected by self-antigens, but the mechanisms that determine these outcomes are incompletely understood. Here, we show that a B cell intrinsic switch between positive and negative selection during ontogeny is determined by a change from Lin28b to let-7 gene expression. Ectopic expression of a Lin28b transgene in murine B cells restored the positive selection of autoreactive B-1 B cells by self-antigen in adult bone marrow. Analysis of antigen-specific immature B cells in early and late ontogeny identified Lin28b-dependent genes associated with B-1 B cell development, including Arid3a and Bhleh41, and Lin28b-independent effects are associated with the presence or absence of self-antigen. These findings identify cell intrinsic and extrinsic determinants of B cell fate during ontogeny and reconcile lineage and selection theories of B cell development. They explain how changes in the balance of positive and negative selection may be able to adapt to meet the immunological needs of an individual during its lifetime.


Assuntos
Linfócitos B/imunologia , Proteínas de Ligação a RNA/imunologia , Animais , Linfócitos B/citologia , Proliferação de Células , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/genética , MicroRNAs/imunologia , Proteínas de Ligação a RNA/genética
11.
Ecotoxicol Environ Saf ; 262: 115314, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37536008

RESUMO

Polycyclic aromatic hydrocarbons (PAHs) are a group of persistent organic pollutants that are carcinogenic, mutagenic, endocrine-toxic, and immunotoxic. PAHs can be found in maternal and fetal blood and in the placenta during pregnancy. They may thus affect placental and fetal development. Therefore, the exposure levels and toxic effects of PAHs in the placenta deserve further study and discussion. This review aims to summarize current knowledge on the effects of PAHs and their metabolites on pregnancy and birth outcomes and on placental trophoblast cells. A growing number of epidemiological studies detected PAH-DNA adducts as well as the 16 high-priority PAHs in the human placenta and showed that placental PAH exposure is associated with adverse fetal outcomes. Trophoblasts are important cells in the placenta and are involved in placental development and function. In vitro studies have shown that exposure to either PAH mixtures, benzo(a)pyrene (BaP) or BaP metabolite benzo(a)pyrene-7,8-dihydrodiol-9,10-epoxide (BPDE) affected trophoblast cell viability, differentiation, migration, and invasion through various signaling pathways. Furthermore, similar effects of BPDE on trophoblast cells could also be observed in BaP-treated mouse models and were related to miscarriage. Although the current data show that PAHs may affect placental trophoblast cells and pregnancy outcomes, further studies (population studies, in vitro studies, and animal studies) are necessary to show the specific effects of different PAHs on placental trophoblasts and pregnancy outcomes.

12.
Angew Chem Int Ed Engl ; 62(51): e202314883, 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-37924309

RESUMO

The high thermodynamic instability and side reactions of Zn-metal anode (ZMA), especially at high current densities, greatly impede the commercialization of aqueous zinc-ion batteries (AZIBs). Herein, a fluorine-rich double protective layer strategy is proposed to obtain the high reversibility of AZIBs through the introduction of a versatile tetradecafluorononane-1,9-diol (TDFND) additive in aqueous electrolyte. TDFND molecule with large adsorption energy (-1.51 eV) preferentially absorbs on the Zn anode surface to form a Zn(OR)2 - (R=-CH2 -(CF2 )7 -CH2 -) cross-linking complex network, which balances space electric field and controls the Zn2+ ion flux, thus enabling the uniform and compact deposition of Zn (002) crystal planes. Meanwhile, TDFND with low Lowest unoccupied molecular orbital (LUMO, 0.10 eV) energy level is priorly decomposed to regulate the interfacial chemistry of ZMA by building a ZnF2 -rich solid electrode/electrolyte interface (SEI) layer. It is found that a 14 nm-thick SEI layer delivers excellent structural integrity to suppress parasitic reactions by blocking the direct contact of active water and ZMA. Consequently, the Zn electrode exhibits a superior cycling life over 430 h at 10 mA cm-2 and a high average Coulombic efficiency of 99.8 % at 5 mA cm-2 . Furthermore, a 68 mAh pouch cell delivers 80.3 % capacity retention for 1000 cycles.

13.
Angew Chem Int Ed Engl ; 62(40): e202309765, 2023 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-37534816

RESUMO

Zn metal anode suffers from dendrite growth and side reactions during cycling, significantly deteriorating the lifespan of aqueous Zn metal batteries. Herein, we introduced an ultrathin and ultra-flat Sb2 O3 molecular crystal layer to stabilize Zn anode. The in situ optical and atomic force microscopes observations show that such a 10 nm Sb2 O3 thin layer could ensure uniform under-layer Zn deposition with suppressed tip growth effect, while the traditional WO3 layer undergoes an uncontrolled up-layer Zn deposition. The superior regulation capability is attributed to the good electronic-blocking ability and low Zn affinity of the molecular crystal layer, free of dangling bonds. Electrochemical tests exhibit Sb2 O3 layer can significantly improve the cycle life of Zn anode from 72 h to 2800 h, in contrast to the 900 h of much thicker WO3 even in 100 nm. This research opens up the application of inorganic molecular crystals as the interfacial layer of Zn anode.

14.
Ecotoxicol Environ Saf ; 239: 113657, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35617902

RESUMO

E-waste usually refers to the discarded electrical or electronic equipment that is no longer used. Informal e-waste recycling methods, such as burning, roasting, acid leaching, and shredding, had resulted in serious air pollution, which is a prominent risk factor for children's health. However, the combined toxicity of air pollutants on children's behavioral health remains unclear. This study collected data on air pollution exposure, calculated the average daily dose (ADD) based on these air pollutants for children in Guiyu (e-waste group, n = 112) and Haojiang (reference group, n = 101), then assessed children's behavioral health using the Strengths and Difficulties Questionnaire (SDQ), and further estimated the associations of ADD, inflammatory cytokines, neurotransmitters, and children's behavioral problems. Compared with Haojiang, Guiyu has poorer air quality and higher levels of ADD, inflammatory cytokines (such as IL-1ß, IL-6, and TNF-α), neurotransmitters (such as DA and SP), and SDQ scores, but lower levels of serum neuropeptide Y (NPY) levels. Spearman correlation analyses indicated that there were significant relationships among inflammatory cytokines, neurotransmitters, and behavioral scores. Multiple linear regression analyses showed that each unit increase in ADD was associated with serum levels of DA and SP, the serum NPY subsequently changed by B (95% CI): 0.99 (0.14, 1.84) nmol/L, 0.25 (0.08, 0.42) ng/mL, and - 0.16 (-0.26, -0.05) ng/mL, respectively. After adjustment for confounders, logistic regression analyses suggested that with each one-fold increase in ADD was associated with the risk of emotional symptoms [OR (95% CI): 18.15 (2.72, 121.06)], hyperactivity-inattention [13.64 (2.28, 81.65)] and total difficulties [8.90 (1.60, 49.35)] and prosocial behavior [- 7.32 (-44.37, -1.21)]. Taken together, this study demonstrates that combined exposure to air pollutants may alter the levels of inflammatory cytokines and serum neurotransmitter to subsequently impact behavioral health in children.


Assuntos
Poluentes Atmosféricos , Resíduo Eletrônico , Comportamento Problema , Poluentes Atmosféricos/análise , Poluentes Atmosféricos/toxicidade , Criança , Citocinas , Resíduo Eletrônico/análise , Exposição Ambiental/efeitos adversos , Exposição Ambiental/análise , Humanos , Neurotransmissores
15.
Am J Physiol Lung Cell Mol Physiol ; 318(3): L549-L561, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-31913647

RESUMO

Prenatal smoke exposure (PSE) is associated with reduced birth weight, impaired fetal development, and increased risk for diseases later in life. Changes in DNA methylation may be involved, as multiple large-scale epigenome-wide association studies showed that PSE is robustly associated with DNA methylation changes in blood among offspring in early life. Insulin-like growth factor-1 (IGF1) is important in growth, differentiation, and repair processes after injury. However, no studies investigated the organ-specific persistence of PSE-induced methylation change of Igf1 into adulthood. Based on our previous studies on the PSE effect on Igf1 promoter methylation in fetal and neonatal mouse offspring, we now have extended our studies to adulthood. Our data show that basal Igf1 promoter methylation generally increased in the lung but decreased in the liver (except for 2 persistent CpG sites in both organs) across three different developmental stages. PSE changed Igf1 promoter methylation in all three developmental stages, which was organ and sex specific. The PSE effect was less pronounced in adult offspring compared with the fetal and neonatal stages. In addition, the PSE effect in the adult stage was more pronounced in the lung compared with the liver. For most CpG sites, an inverse correlation was found for promoter methylation and mRNA expression when the data of all three stages were combined. This was more prominent in the liver. Our findings provide additional evidence for sex- and organ-dependent prenatal programming, which supports the developmental origins of health and disease (DOHaD) hypothesis.


Assuntos
Metilação de DNA , Retardo do Crescimento Fetal/patologia , Regulação da Expressão Gênica no Desenvolvimento , Fator de Crescimento Insulin-Like I/genética , Efeitos Tardios da Exposição Pré-Natal/patologia , Regiões Promotoras Genéticas , Fumaça/efeitos adversos , Animais , Animais Recém-Nascidos , Epigênese Genética , Feminino , Retardo do Crescimento Fetal/etiologia , Retardo do Crescimento Fetal/metabolismo , Masculino , Camundongos , Especificidade de Órgãos , Gravidez , Efeitos Tardios da Exposição Pré-Natal/etiologia , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Fatores Sexuais
16.
Small ; 15(23): e1900816, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31021514

RESUMO

Carbonaceous materials are promising anodes for potassium-ion batteries (PIBs). However, it is hard for large K ions (1.38 Å) to achieve long-distance diffusion in pristine carbonaceous materials. In this work, the following are synthesized: S/N codoped carbon nanofiber aerogels (S/N-CNFAs) with optimized electronic structure by S/N codoping, enhanced interlayer spacing by S doping, and a 3D interconnected porous structure of aerogel, through a pyrolysis sustainable seaweed (Fe-alginate) aerogel strategy. Specifically, the S/N-CNFAs electrode delivers high reversible capacities of 356 and 112 mA h g-1 at 100 and 5000 mA g-1 , respectively. The capacity reaches 168 mA h g-1 at 2000 mA g-1 after 1000 cycles. A full cell with a S/N-CNFAs anode and potassium prussian blue cathode displays a specific capacity of 198 mA h g-1 at 200 mA g-1 . Density functional theory calculations indicate that S/N codoping is beneficial to synergistically improve K ions storage of S/N-CNFAs by enhancing the adsorption of K ions and reducing the diffusion barrier of K ions. This work offers a facile heteroatom doping paradigm for designing new carbonaceous anodes for high-performance PIBs.

17.
Langmuir ; 35(34): 11071-11079, 2019 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-31380650

RESUMO

Underwater superoleophobic membranes as an effective means of resisting oil stains are often subjected to cumbersome modification procedures, limited stability, and difficult expansion of assembly. To develop simple, green, stable, and scalable underwater superoleophobic films, herein, cellulose-based oil-water separators with high-efficiency oil purification were constructed by using commercial carboxymethocel (CMC) as a solute and a dimethyl sulfoxide-modified ionic liquid as a solvent. Owing to the superior dissolution, regenerability, and gelation of CMC, the metal mesh and gauze can be imparted with an excellent oleophobic ability through simple dipping, spraying, and coating of the CMC solution. As a result, these modified functionalized devices exhibit a purification capacity of more than 99.5% for various oil-water mixtures. Unexpectedly, the CMC gel coating also shields the gloves from organic solvents. Significantly, when the CMC solution is applied to an adsorption membrane, it not only endows the film with excellent oil-water separation characteristics but also enhances the adsorption amount and rate of the adsorbent. Therefore, CMC-based oleophobic materials can be widely developed and applied to a variety of fields that require oleophobic properties.

18.
Environ Res ; 171: 536-545, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30763874

RESUMO

This study explored the effects of maternal exposure to e-waste environmental heavy metals on neonatal DNA methylation patterns. Neonatal umbilical cord blood (UCB) samples were collected from participants that resided in an e-waste recycling area, Guiyu and a nearby non-e-waste area, Haojiang in China. The concentrations of UCB lead (Pb), cadmium (Cd), manganese (Mn) and chromium (Cr) were measured by graphite furnace atomic absorption spectrometry. Epigenome-wide DNA methylation at 473, 844 CpG sites (CpGs) were assessed by Illumina 450 K BeadChip. The differential methylation of CpG sites from the microarray were further validated by bisulfite pyrosequencing. Bioinformatics analysis showed that 125 CpGs mapped to 79 genes were differential methylation in the e-waste exposed group with higher concentrations of heavy metals in neonatal UCB. These genes mainly involve in multiple biological processes including calcium ion binding, cell adhesion, embryonic morphogenesis, as well as in signaling pathways related to NFkB activation, adherens junction, TGF beta and apoptosis. Among them, BAI1 and CTNNA2 (involving in neuron differentiation and development) were further verified to be hyper- and hypo-methylated, respectively, which were associated with maternal Pb exposure. These results suggest that maternal exposure to e-waste environmental heavy metals (particularly lead) during pregnancy are associated with peripheral blood differential DNA methylation in newborns, specifically the genes involving in brain neuron development.


Assuntos
Metilação de DNA , Resíduo Eletrônico , Exposição Materna/estatística & dados numéricos , Metais Pesados , China , Feminino , Humanos , Recém-Nascido , Gravidez , Reciclagem
19.
Environ Geochem Health ; 41(1): 225-247, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30171477

RESUMO

MicroRNAs (miRNAs) are a class of small, noncoding RNA species that play crucial roles across many biological processes and in the pathogenesis of major diseases, including cancer. Recent studies suggest that the expression of miRNA is altered by certain environmental chemicals, including metals, organic pollutants, cigarette smoke, pesticides and carcinogenic drugs. In addition, extensive studies have indicated the existence and importance of miRNA in different cancers, suggesting that cancer-related miRNAs could serve as potential markers for chemically induced cancers. The altered expression of miRNA was considered to be a vital pathogenic role in xenobiotic-induced cancer development. However, the significance of miRNA in the etiology of cancer and the exact mechanisms by which environmental factors alter miRNA expression remain relatively unexplored. Hence, understanding the interaction of miRNAs with environmental chemicals will provide important information on mechanisms underlying the pathogenesis of chemically induced cancers, and effectively diagnose and treat human cancers resulting from chronic or acute carcinogen exposure. This study presents the current evidence that the miRNA deregulation induced by various chemical carcinogens, different cancers caused by environmental carcinogens and the potentially related genes in the onset or progression of cancer. For each carcinogen, the specifically expressed miRNA may be considered as the early biomarkers of the cancer process. In this review, we also summarize various target genes of the altered miRNA, oncogenes or anti-oncogenes, and the existing evidence regarding the gene regulation mechanisms of cancer caused by environmentally induced miRNA alteration. The future perspective of miRNA may become attractive targets for the diagnosis and treatment of carcinogen-induced cancer.


Assuntos
Carcinogênese/induzido quimicamente , Carcinógenos Ambientais/toxicidade , Poluentes Ambientais/toxicidade , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , MicroRNAs/fisiologia , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Biomarcadores Tumorais/fisiologia , Genes Neoplásicos/genética , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias/induzido quimicamente
20.
Environ Geochem Health ; 41(1): 309-321, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29696494

RESUMO

The purpose of this study was to investigate the associations between levels of lead (Pb), cadmium (Cd), chromium (Cr), and manganese (Mn) in the PM2.5 and blood and physical growth, and development parameters including birth length and weight, height, weight, body mass index (BMI), head circumference, and chest circumference in preschool children from Guiyu (e-waste exposure area) and Haojiang (the reference area). A total of 470 preschool children from Guiyu and Haojiang located in southeast coast of China were recruited and required to undergo physical examination and blood tests during the study period. Birth length and weight were obtained by birth records and questionnaire. Pb and Cd in both PM2.5 and blood were significantly higher in Guiyu than Haojiang. Remarkably, the children of Guiyu had significantly lower birth weight and length, BMI, and chest circumference when compare to their peers from the reference area (all p value < 0.05). Spearman correlation analyses showed that blood Pb was negatively correlated with height (r = -0.130, p < 0.001), weight (r = -0.169, p < 0.001), BMI (r = -0.100, p < 0.05), head circumference (r = -0.095, p < 0.05), and chest circumference (r = -0.112, p < 0.05). After adjustment for the potential confounders in further linear regression analyses, blood Pb was negatively associated with height (ß = -0.066, p < 0.05), weight (ß = -0.119, p < 0.001), head circumference (ß = -0.123, p < 0.01), and chest circumference (ß = -0.104, p < 0.05), respectively. No significant association between blood Cd, Cr, or Mn was found with any of our developmental outcomes. Taken together, lead exposure limits or delays the growth and development of preschool children.


Assuntos
Desenvolvimento Infantil/efeitos dos fármacos , Resíduo Eletrônico/efeitos adversos , Exposição Ambiental , Metais Pesados/toxicidade , Cádmio/sangue , Cádmio/química , Pré-Escolar , China , Cromo/sangue , Cromo/química , Feminino , Humanos , Masculino , Manganês/sangue , Manganês/química , Metais Pesados/sangue , Metais Pesados/química , Tamanho da Partícula , Material Particulado/química , Análise de Regressão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA