Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(31): e2222095120, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37487094

RESUMO

The locus coeruleus (LC) is a small nucleus in the pons from which ascending and descending projections innervate major parts of the central nervous system. Its major transmitter is norepinephrine (NE). This system is evolutionarily conserved, including in humans, and its functions are associated with wakefulness and related to disorders, such as depression. Here, we performed single-cell ribonucleic acid-sequencing (RNA-seq) to subdivide neurons in the LC (24 clusters in total) into 3 NE, 17 glutamate, and 5 γ-aminobutyric acid (GABA) subtypes, and to chart their neuropeptide, cotransmitter, and receptor profiles. We found that NE neurons expressed at least 19 neuropeptide transcripts, notably galanin (Gal) but not Npy, and >30 neuropeptide receptors. Among the galanin receptors, Galr1 was expressed in ~19% of NE neurons, as was also confirmed by in situ hybridization. Unexpectedly, Galr1 was highly expressed in GABA neurons surrounding the NE ensemble. Patch-clamp electrophysiology and cell-type-specific Ca2+-imaging using GCaMP6s revealed that a GalR1 agonist inhibits up to ~35% of NE neurons. This effect is direct and does not rely on feed-forward GABA inhibition. Our results define a role for the galanin system in NE functions, and a conceptual framework for the action of many other peptides and their receptors.


Assuntos
Galanina , Hormônios Peptídicos , Humanos , Animais , Camundongos , Locus Cerúleo , Neurônios , Ácido Glutâmico , Norepinefrina
2.
Proc Natl Acad Sci U S A ; 118(24)2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-34108238

RESUMO

Galanin receptor1 (GalR1) transcript levels are elevated in the rat ventral periaqueductal gray (vPAG) after chronic mild stress (CMS) and are related to depression-like behavior. To explore the mechanisms underlying the elevated GalR1 expression, we carried out molecular biological experiments in vitro and in animal behavioral experiments in vivo. It was found that a restricted upstream region of the GalR1 gene, from -250 to -220, harbors an E-box and plays a negative role in the GalR1 promoter activity. The transcription factor Scratch2 bound to the E-box to down-regulate GalR1 promoter activity and lower expression levels of the GalR1 gene. The expression of Scratch2 was significantly decreased in the vPAG of CMS rats. Importantly, local knockdown of Scratch2 in the vPAG caused elevated expression of GalR1 in the same region, as well as depression-like behaviors. RNAscope analysis revealed that GalR1 mRNA is expressed together with Scratch2 in both GABA and glutamate neurons. Taking these data together, our study further supports the involvement of GalR1 in mood control and suggests a role for Scratch2 as a regulator of depression-like behavior by repressing the GalR1 gene in the vPAG.


Assuntos
Comportamento Animal , Depressão/patologia , Substância Cinzenta Periaquedutal/patologia , Receptor Tipo 1 de Galanina/metabolismo , Fatores de Transcrição/metabolismo , Animais , Elementos E-Box/genética , Neurônios GABAérgicos/metabolismo , Regulação da Expressão Gênica , Ácido Glutâmico/metabolismo , Células PC12 , Regiões Promotoras Genéticas/genética , Ligação Proteica , Ratos , Receptor Tipo 1 de Galanina/genética , Estresse Psicológico/complicações , Fatores de Transcrição/genética , Sítio de Iniciação de Transcrição
3.
Mol Psychiatry ; 27(1): 534-558, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-33589739

RESUMO

Traditional antidepressants largely interfere with monoaminergic transport or degradation systems, taking several weeks to have their therapeutic actions. Moreover, a large proportion of depressed patients are resistant to these therapies. Several atypical antidepressants have been developed which interact with G protein coupled receptors (GPCRs) instead, as direct targeting of receptors may achieve more efficacious and faster antidepressant actions. The focus of this review is to provide an update on how distinct GPCRs mediate antidepressant actions and discuss recent insights into how GPCRs regulate the pathophysiology of Major Depressive Disorder (MDD). We also discuss the therapeutic potential of novel GPCR targets, which are appealing due to their ligand selectivity, expression pattern, or pharmacological profiles. Finally, we highlight recent advances in understanding GPCR pharmacology and structure, and how they may provide new avenues for drug development.


Assuntos
Transtorno Depressivo Maior , Antidepressivos/farmacologia , Antidepressivos/uso terapêutico , Transtorno Depressivo Maior/tratamento farmacológico , Humanos , Ligantes , Receptores Acoplados a Proteínas G/metabolismo
4.
Mediators Inflamm ; 2019: 2716028, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31249471

RESUMO

The neuropeptide galanin and its receptors have been found to have protective effects on neurons. However, the role of galanin on astrocytes is still unclear. The present study is aimed at investigating the effects of galanin on the viability of cultured rat cortical astrocytes after oxidative stress induced by H2O2 and possible receptor and signaling mechanisms involved. Treatment of galanin had significant protective effects against H2O2-induced toxicity in the cultured cortical astrocytes. H2O2 induced an upregulation of phosphorylated extracellular signal-related kinase1/2 (pERK1/2) in astrocytes, which was suppressed by coapplication of galanin, suggesting an involvement of the pERK1/2 signal pathway in the protective effects of galanin. GalR2 has higher expression levels than GalR1 and GalR3 in the cultured cortical astrocytes, and GalR2 agonist AR-M1896 mimicked galanin effects on the astrocytes, implying that galanin protective effects mainly mediated by GalR2. Meanwhile, galanin had no effect on the A1-type transformation of rat cortical astrocytes. All those results suggest that galanin protects rat cortical astrocytes from oxidative stress by suppressing H2O2-induced upregulation of pERK1/2, mainly through GalR2.


Assuntos
Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Galanina/farmacologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Animais , Western Blotting , Células Cultivadas , Peróxido de Hidrogênio/farmacologia , Imuno-Histoquímica , Sistema de Sinalização das MAP Quinases/genética , Estresse Oxidativo/efeitos dos fármacos , Reação em Cadeia da Polimerase , Ratos , Ratos Sprague-Dawley , Receptor Tipo 2 de Galanina/genética , Receptor Tipo 2 de Galanina/metabolismo , Transdução de Sinais/efeitos dos fármacos
5.
Mediators Inflamm ; 2019: 7898095, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31736656

RESUMO

Accumulated evidences show that neuroinflammation play a pivotal role in the pathogenesis of depression. Neuropeptide Y (NPY) and its receptors have been demonstrated to have anti-inflammative as well as antidepressant effects. In the present study, the ability of NPY to modulate depressive-like behaviors induced by lipopolysaccharides (LPS) in rats and the receptors and signaling mechanisms involved were investigated. Continuous injection LPS (i.p) for 4 days led to development of depressive-like behaviors in rats, accompanied with M1-type microglia activation and increased levels of IL-1ß as well as decreased levels of NPY and Y2R expression in the mPFC selectively. Local injection of NPY into the medial prefrontal cortex (mPFC) ameliorated the depression-like behaviors and suppressed the NLRP3 inflammasome signaling pathway. Y2R agonist PYY (3-36) mimicked and Y2R antagonist BIIE0246 abolished the NPY effects in the mPFC. All these results suggest that NPY and Y2R in the mPFC are involved in the pathophysiology of depression and NPY plays an antidepressant role in the mPFC mainly via Y2R, which suppresses the NLRP3 signaling pathway, in LPS-induced depression model rats.


Assuntos
Lipopolissacarídeos/farmacologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Receptores de Neuropeptídeo Y/metabolismo , Animais , Western Blotting , Depressão/metabolismo , Interleucina-1beta/metabolismo , Ratos , Ratos Sprague-Dawley , Reação em Cadeia da Polimerase em Tempo Real , Transdução de Sinais/efeitos dos fármacos
6.
Proc Natl Acad Sci U S A ; 113(32): E4726-35, 2016 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-27457954

RESUMO

The neuropeptide galanin coexists in rat brain with serotonin in the dorsal raphe nucleus and with noradrenaline in the locus coeruleus (LC), and it has been suggested to be involved in depression. We studied rats exposed to chronic mild stress (CMS), a rodent model of depression. As expected, these rats showed several endophenotypes relevant to depression-like behavior compared with controls. All these endophenotypes were normalized after administration of a selective serotonin reuptake inhibitor. The transcripts for galanin and two of its receptors, galanin receptor 1 (GALR1) and GALR2, were analyzed with quantitative real-time PCR using laser capture microdissection in the following brain regions: the hippocampal formation, LC, and ventral periaqueductal gray (vPAG). Only Galr1 mRNA levels were significantly increased, and only in the latter region. After knocking down Galr1 in the vPAG with an siRNA technique, all parameters of the depressive behavioral phenotype were similar to controls. Thus, the depression-like behavior in rats exposed to CMS is likely related to an elevated expression of Galr1 in the vPAG, suggesting that a GALR1 antagonist could have antidepressant effects.


Assuntos
Depressão/etiologia , Substância Cinzenta Periaquedutal/fisiologia , Receptor Tipo 1 de Galanina/fisiologia , Animais , Depressão/tratamento farmacológico , Modelos Animais de Doenças , Locus Cerúleo/fisiologia , Masculino , Ratos , Ratos Sprague-Dawley , Receptor Tipo 1 de Galanina/antagonistas & inibidores , Serotonina/fisiologia , Ácido gama-Aminobutírico/fisiologia
7.
Biochem Biophys Res Commun ; 503(1): 79-85, 2018 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-29852172

RESUMO

The noradrenergic neurons of the locus coeruleus (LC) are associated with various brain functions and psychiatric disorders, such as addiction and depression. It has been shown that neuropeptide galanin (GAL) inhibits neuronal excitability in LC, but the mechanisms remain unclear. In the present study, we investigated the ionic and signal transduction mechanisms underlying inhibitory effect of GAL on LC neurons using whole-cell patch clamp recording in rat brain slices. Bath application of GAL decreased the spontaneous firings and induced a dose-dependent hyperpolarization of LC neurons and this effect was attenuated by knockdown of Galr1, but not Galr2, confirming that mainly GALR1 mediates the inhibition effect of GAL. The inhibitory effect of GAL was also blocked by treatments of pertussis toxin (PTX), GTP-γ-s or GDP-ß-s, respectively, indicating that the functions of PTX sensitive Gi/o protein are required for GAL-induced hyperpolarization. Moreover, the blockers of GIRK (tertiapin-Q or SCH2 3390 hydrochloride) attenuated the GAL response while blocker of BK/SK/KATP channels or TASK-1/3 channels did not affect it significantly, suggesting that GIRK channels play an important role in GAL-induced hyperpolarization in LC neurons. Taken together, the inhibitory effect of GAL on LC neurons is mediated by GALR1 via PTX-sensitive Gi/o proteins, which activate GIRK channels.


Assuntos
Canais de Potássio Corretores do Fluxo de Internalização Acoplados a Proteínas G/metabolismo , Locus Cerúleo/metabolismo , Receptor Tipo 1 de Galanina/metabolismo , Neurônios Adrenérgicos/efeitos dos fármacos , Neurônios Adrenérgicos/metabolismo , Animais , Canais de Potássio Corretores do Fluxo de Internalização Acoplados a Proteínas G/antagonistas & inibidores , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/metabolismo , Galanina/metabolismo , Técnicas de Silenciamento de Genes , Locus Cerúleo/citologia , Locus Cerúleo/efeitos dos fármacos , Masculino , Técnicas de Patch-Clamp , Toxina Pertussis/farmacologia , Bloqueadores dos Canais de Potássio/farmacologia , Precursores de Proteínas/metabolismo , RNA Interferente Pequeno/administração & dosagem , RNA Interferente Pequeno/genética , Ratos , Ratos Sprague-Dawley , Receptor Tipo 1 de Galanina/antagonistas & inibidores , Receptor Tipo 1 de Galanina/genética , Receptor Tipo 2 de Galanina/antagonistas & inibidores , Receptor Tipo 2 de Galanina/genética , Receptor Tipo 2 de Galanina/metabolismo , Transdução de Sinais
8.
Med Sci Monit ; 24: 397-404, 2018 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-29352772

RESUMO

BACKGROUND Congenital single-side deafness (SSD) affects sound localization even after cochlear implantation (CI) in some conditions. The medial nucleus of the trapezoid body (MNTB) plays an important role in binaural benefit and sound localization, but little is known about intrinsic molecular changes in MNTB with SSD. We aimed to observe changes in MNTB in early-developmental SSD rats, including the key neurotransmitters (GABA, Gly, Glu) and major receptors (GABAa-R/GABAb-R for GABA, Gly-R for Gly, and AMPA/NMDA for Glu). MATERIAL AND METHODS The model of early-developmental SSD was acquired by right cochlear ablation at P12 and confirmed by ABR. High-performance liquid chromatography fluorescence detection (HPLC-FLD) was performed to measure the levels of neurotransmitters in MNTB. The relative expression of neurotransmitter receptors was tested by quantitative real-time PCR analysis. RESULTS (1) The right MNTB of experimental rats had an increase in GABA, Gly, and Glu at 4 weeks after right cochlear ablation (P<0.05). (2) At 2 weeks, the left MNTB of experimental rats showed increases in GABAa-R, GABAb-R, Gly-R, and AMPA, while the right MNTB showed lower expression of NMDA (P<0.05). The higher receptors in left MNTB decreased to a level at which we found no difference at 1 week for GABAa-R and GABAb-R (P>0.05), and was even reversed for Gly-R and AMPA (P<0.05). (3) Gly level was significantly increased at 2 weeks bilaterally and continued to 4 weeks in the left MNTB (P<0.05). CONCLUSIONS Early-developmental SSD can lead to asymmetric distribution of neurotransmitters and receptors in MNTB, which can be the fundamental cause of defective sound localization after cochlear implantation.


Assuntos
Surdez/metabolismo , Neurotransmissores/fisiologia , Receptores de Neurotransmissores/fisiologia , Potenciais de Ação , Animais , Surdez/fisiopatologia , Feminino , Masculino , Neurotransmissores/metabolismo , Ratos , Ratos Sprague-Dawley , Receptores de GABA/metabolismo , Receptores de Neurotransmissores/metabolismo , Corpo Trapezoide/citologia , Corpo Trapezoide/fisiologia , Ácido gama-Aminobutírico/metabolismo
9.
Biol Chem ; 398(10): 1127-1139, 2017 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-28525358

RESUMO

Galanin is a neuropeptide with a widespread distribution throughout the nervous and endocrine systems, and recent studies have shown an anti-proliferative effect of galanin on several types of tumors. However, whether and how galanin and its receptors are involved in the regulation of cell proliferation in glioma cells remains unclear. In this study, the roles of galanin and its subtype 1 receptor (GAL1) in the proliferation of human U251 and T98G glioma cells were investigated. We found that galanin significantly suppressed the proliferation of U251 and T98G cells as well as tumor growth in nude mice. However, galanin did not exert apoptotic or cytotoxic effects on these two cell lines. In addition, we showed that galanin decreased the proliferation of U251 and T98G cells via its GAL1 receptor. Finally, we found that the GAL1 receptor was involved in the suppressive effects of galanin by activating ERK1/2.


Assuntos
Galanina/farmacologia , Glioma/tratamento farmacológico , Glioma/patologia , Receptor Tipo 1 de Galanina/antagonistas & inibidores , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Glioma/metabolismo , Humanos , Receptor Tipo 1 de Galanina/metabolismo , Relação Estrutura-Atividade , Células Tumorais Cultivadas
10.
Biochim Biophys Acta ; 1849(3): 270-81, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25514493

RESUMO

Pokemon, an important proto-oncoprotein, is a transcriptional repressor that belongs to the POK (POZ and Krüppel) family. Smad4, a key component of TGF-ß pathway, plays an essential role in TGF-ß-induced transcriptional responses. In this study, we show that Pokemon can interact directly with Smad4 both in vitro and in vivo. Overexpression of Pokemon decreases TGF-ß-induced transcriptional activities, whereas knockdown of Pokemon increases these activities. Interestingly, Pokemon does not affect activation of Smad2/3, formation of Smads complex, or DNA binding activity of Smad4. TGF-ß1 treatment increases the interaction between Pokemon and Smad4, and also enhances the recruitment of Pokemon to Smad4-DNA complex. In addition, we also find that Pokemon recruits HDAC1 to Smad4 complex but decreases the interaction between Smad4 and p300/CBP. Taken together, all these data suggest that Pokemon is a new partner of Smad4 and plays a negative role in TGF-ß pathway.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Mapas de Interação de Proteínas/genética , Proteína Smad4/metabolismo , Fatores de Transcrição/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Sítios de Ligação , Proteínas de Ligação a DNA/genética , Células Hep G2 , Humanos , Transdução de Sinais/genética , Proteína Smad2/genética , Proteína Smad2/metabolismo , Proteína Smad3/genética , Proteína Smad3/metabolismo , Proteína Smad4/genética , Fatores de Transcrição/genética , Ativação Transcricional/genética , Fator de Crescimento Transformador beta/farmacologia
11.
Biochem Biophys Res Commun ; 446(1): 316-21, 2014 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-24602615

RESUMO

The large conductance Ca(2+)-activated K(+) (BK) channels are widely distributed in the brain, and act as intracellular calcium sensors in neurons. They play an important feedback role in controlling Ca(2+) flux and Ca(2+)-dependent processes, including neurotransmitter release and cellular excitability. In this study, the effects of the neuropeptide galanin on BK channels were examined by determining the whole-cell currents and single-channel activities in human embryonic kidney (HEK293) cells co-expressing GalR2 and the BK alpha subunit. Galanin enhanced the currents of BK channels, in a concentration-dependent and PTX-independent manner, with an ED50 value of 71.8±16.9 nM. This activation was mediated by GalR2, since its agonist AR-M1896 mimicked the effect of galanin, and since galanin did not facilitate BK currents in cells co-expressing cDNAs of BK and GalR1 or GalR3. The galanin-induced BK current persisted after replacement with Ca(2+)-free solution, suggesting that extracellular Ca(2+) is not essential. Chelating intracellular Ca(2+) by either the slow Ca(2+) buffer EGTA or the fast Ca(2+) buffer BAPTA abolished galanin-mediated activation of BK channels, indicating the important role of intracellular Ca(2+). The role of Ca(2+) efflux from the sarcoplasmic reticulum/endoplasmic reticulum (SR/ER) was confirmed by application of thapsigargin, an irreversible inhibitor that depletes Ca(2+) from SR/ER. Moreover, the inositol-1,4,5-triphosphate receptor (IP3R) was identified as the mediator responsible for increased intracellular Ca(2+) activating BK channels. Taken together, activation of GalR2 leads to elevation of intracellular Ca(2+) is due to Ca(2+) efflux from ER through IP3R sequentially opening BK channels.


Assuntos
Inositol 1,4,5-Trifosfato/metabolismo , Canais de Potássio Ativados por Cálcio de Condutância Alta/metabolismo , Receptor Tipo 2 de Galanina/metabolismo , Animais , Sinalização do Cálcio , Retículo Endoplasmático/metabolismo , Galanina/metabolismo , Células HEK293 , Humanos , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Subunidades alfa do Canal de Potássio Ativado por Cálcio de Condutância Alta/metabolismo , Camundongos , Modelos Biológicos , Técnicas de Patch-Clamp , Transdução de Sinais
12.
Proc Natl Acad Sci U S A ; 108(41): 17201-6, 2011 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-21949401

RESUMO

Although brain-derived neurotrophic factor (BDNF) is known to regulate circuit development and synaptic plasticity, its exact role in neuronal network activity remains elusive. Using mutant mice (TrkB-PV(-/-)) in which the gene for the BDNF receptor, tyrosine kinase B receptor (trkB), has been specifically deleted in parvalbumin-expressing, fast-spiking GABAergic (PV+) interneurons, we show that TrkB is structurally and functionally important for the integrity of the hippocampal network. The amplitude of glutamatergic inputs to PV+ interneurons and the frequency of GABAergic inputs to excitatory pyramidal cells were reduced in the TrkB-PV(-/-) mice. Functionally, rhythmic network activity in the gamma-frequency band (30-80 Hz) was significantly decreased in hippocampal area CA1. This decrease was caused by a desynchronization and overall reduction in frequency of action potentials generated in PV+ interneurons of TrkB-PV(-/-) mice. Our results show that the integration of PV+ interneurons into the hippocampal microcircuit is impaired in TrkB-PV(-/-) mice, resulting in decreased rhythmic network activity in the gamma-frequency band.


Assuntos
Região CA1 Hipocampal/fisiologia , Interneurônios/fisiologia , Receptor trkB/fisiologia , Potenciais de Ação , Animais , Fator Neurotrófico Derivado do Encéfalo/fisiologia , Região CA1 Hipocampal/citologia , Contagem de Células , Dendritos/fisiologia , Neurônios GABAérgicos/fisiologia , Camundongos , Camundongos Knockout , Rede Nervosa/citologia , Rede Nervosa/fisiologia , Parvalbuminas/metabolismo , Receptor trkB/deficiência , Receptor trkB/genética , Transdução de Sinais , Transmissão Sináptica/fisiologia
13.
Theranostics ; 13(3): 955-972, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36793870

RESUMO

Background: Stress is an important risk factor to induce psychiatric disorders such as depression. Phloretin (PHL), a natural dihydrochalcone compound, has been shown to exhibit anti-inflammatory and anti-oxidative effects. However, the impact of PHL on the depression and the underlying mechanism remain unclear. Methods: The animal behavior tests were used to determine the protective of PHL on the chronic mild stress (CMS)-induced depression-like behaviors. The Magnetic Resonance Imaging (MRI), electron microscopy analysis, fiber photometry, electrophysiology, and Structure Illumination Microscopy (SIM) were used to investigate the protective of PHL on the structural and functional impairments induced by CMS exposure in the mPFC. The RNA sequencing, western blot, reporter gene assay, and chromatin immunoprecipitation were adopted to investigate the mechanisms. Results: We showed that PHL efficiently prevented the CMS-induced depressive-like behaviors. Moreover, PHL not only attenuated the decrease of synapse losses but also improved the dendritic spine density and neuronal activity in the mPFC after CMS exposure. Furthermore, PHL remarkably inhibited the CMS-induced microglial activation and phagocytic activity in the mPFC. In addition, we demonstrated that PHL decreased the CMS-induced synapse losses by inhibiting the deposition of complement C3 deposition onto synapses and subsequent microglia-mediated synaptic engulfment. Finally, we revealed that PHL inhibited the NF-κB-C3 axis to display neuroprotective effects. Conclusions: Our results indicate that PHL represses the NF-κB-C3 axis and subsequent microglia-mediated synaptic engulfment to protect against CMS-induced depression in the mPFC.


Assuntos
Depressão , Microglia , Animais , Depressão/tratamento farmacológico , Depressão/prevenção & controle , Depressão/etiologia , NF-kappa B , Floretina/farmacologia , Neurônios/patologia
14.
Neuropsychopharmacology ; 48(3): 508-517, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36076020

RESUMO

Serum amyloid P component (SAP) is a universal constituent of human amyloid deposits including those in Alzheimer's disease. SAP has been observed to be elevated in patients with depression, and higher SAP levels are associated with better response to the antidepressant escitalopram. The mechanisms underlying these clinical observations remain unclear. We examined the effect of SAP on serotonin transporter (SERT) expression and localization using Western blot, confocal microscopy, and positron emission tomography with the radioligand [11C]DASB. We also investigated the effect of SAP on treatment response to escitalopram in mice with the forced swim test (FST), a classical behaviour paradigm to assess antidepressant effects. SAP reduced [11C]DASB binding as an index of SERT levels, consistent with Western blots showing decreased total SAP protein because of increased protein degradation. In conjunction with the global decrease in SERT levels, SAP also promotes VAMP-2 mediated SERT membrane insertion. SAP levels are correlated with behavioural despair and SSRI treatment response in mice with FST. In MDD patients, the SAP and membrane SERT levels are correlated with response to SSRI treatment. SAP has complex effects on SERT levels and localization, thereby modulating the effect of SSRIs, which could partially explain clinical variability in antidepressant treatment response. These results add to our understanding of the mechanism for antidepressant drug action, and with further work could be of clinical utility.


Assuntos
Proteínas da Membrana Plasmática de Transporte de Serotonina , Componente Amiloide P Sérico , Humanos , Camundongos , Animais , Proteínas da Membrana Plasmática de Transporte de Serotonina/metabolismo , Componente Amiloide P Sérico/metabolismo , Escitalopram , Antidepressivos/farmacologia , Inibidores Seletivos de Recaptação de Serotonina/farmacologia
15.
Cell Rep ; 40(7): 111199, 2022 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-35977516

RESUMO

The norepinephrine neurons in locus coeruleus (LC-NE neurons) are essential for sleep arousal, pain sensation, and cocaine addiction. According to previous studies, cocaine increases NE overflow (the profile of extracellular NE level in response to stimulation) by blocking the NE reuptake. NE overflow is determined by NE release via exocytosis and reuptake through NE transporter (NET). However, whether cocaine directly affects vesicular NE release has not been directly tested. By recording quantal NE release from LC-NE neurons, we report that cocaine directly increases the frequency of quantal NE release through regulation of NET and downstream protein kinase C (PKC) signaling, and this facilitation of NE release modulates the activity of LC-NE neurons and cocaine-induced stimulant behavior. Thus, these findings expand the repertoire of mechanisms underlying the effects of cocaine on NE (pro-release and anti-reuptake), demonstrate NET as a release enhancer in LC-NE neurons, and provide potential sites for treatment of cocaine addiction.


Assuntos
Transtornos Relacionados ao Uso de Cocaína , Cocaína , Cocaína/farmacologia , Transtornos Relacionados ao Uso de Cocaína/metabolismo , Humanos , Locus Cerúleo/metabolismo , Neurônios/metabolismo , Norepinefrina/metabolismo , Norepinefrina/farmacologia
16.
Proc Natl Acad Sci U S A ; 105(50): 20004-8, 2008 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-19066214

RESUMO

Treatment of neuropathic pain is a major clinical problem. This study shows expression of phospholipase ss3 (PLCss3) in mouse and human DRG neurons, mainly in small ones and mostly with a nonpeptidergic phenotype. After spared nerve injury, the pain threshold was strongly reduced, and systemic treatment of such animals with the unselective PLC inhibitor U73122 caused a rapid and long-lasting (48-h) increase in pain threshold. Thus, inhibition of PLC may provide a way to treat neuropathic pain.


Assuntos
Estrenos/uso terapêutico , Hiperalgesia/tratamento farmacológico , Dor/tratamento farmacológico , Inibidores de Fosfodiesterase/uso terapêutico , Fosfolipase C beta/antagonistas & inibidores , Pirrolidinonas/uso terapêutico , Traumatismos da Medula Espinal/enzimologia , Animais , Modelos Animais de Doenças , Gânglios Espinais/efeitos dos fármacos , Gânglios Espinais/enzimologia , Gânglios Espinais/lesões , Humanos , Hiperalgesia/enzimologia , Hiperalgesia/etiologia , Camundongos , Camundongos Mutantes , Dor/enzimologia , Dor/etiologia , Limiar da Dor/efeitos dos fármacos , Fosfolipase C beta/genética , Medula Espinal/efeitos dos fármacos , Medula Espinal/enzimologia , Traumatismos da Medula Espinal/complicações
17.
Proc Natl Acad Sci U S A ; 105(14): 5609-13, 2008 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-18385373

RESUMO

The neuropeptide galanin R1 receptor (GalR1) was tagged at its C terminus with EGFP (GalR1-EGFP) to study receptor localization and trafficking. In PC12 and HEK293 cells, functional GalR1-EGFP was expressed on the plasma membrane and internalized into cytoplasmic vesicles after galanin stimulation. The internalization was blocked by 0.4 M sucrose and by silencing of clathrin with siRNA methodology. Internalized GalR1-EGFP and LysoTracker, a lysosomal marker, overlapped in intracellular vesicles after prolonged galanin stimulation. This colocalization was strongly reduced after site-directed mutagenesis of the motif YXXØ on the C terminus of GalR1 (where Ø is a bulky hydrophobic residue and X any amino acid). Taken together, these data suggest that GalR1 is internalized via the clathrin-dependent, endocytic pathway and then, to a large extent, delivered to lysosomes for degradation through the lysosome-targeting signal YXXØ.


Assuntos
Endocitose , Lisossomos/metabolismo , Receptor Tipo 1 de Galanina/metabolismo , Motivos de Aminoácidos/fisiologia , Linhagem Celular , Clatrina , Citoplasma/metabolismo , Endossomos/metabolismo , Galanina/farmacologia , Proteínas de Fluorescência Verde , Humanos , Transporte Proteico , Sacarose
18.
Gen Thorac Cardiovasc Surg ; 68(8): 746-753, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32390086

RESUMO

OBJECTIVE: Palmar hyperhidrosis affects 0.6-10% of the general population, having an important impact in patients' quality of life. The definitive treatment for palmar hyperhidrosis is thoracic sympathectomy. The purpose of this study is to evaluate the quality of life after thoracic sympathectomy for palmar hyperhidrosis. METHODS: The interest studies were searched in six comprehensive databases. The quality of the studies was assessed using the risk of bias tool recommended by the Cochrane system evaluation manual. Meta-analysis was performed with RevMan version 5.3. The outcome of interest was quality of life. The subgroup analysis and sensitive analysis were performed. RESULTS: Nine trials, including 895 patients, with accessible data comparing preoperative quality of life score with postoperative quality-of-life score were used for data analysis. Compared with preoperative quality-of-life score, application of thoracic sympathectomy improved the postoperative quality of life of palmar hyperhidrosis patients (MD = 57.81, 95% CI 53.33-62.30). Subgroup analysis of the different thoracic sympathectomy segment showed that there was no significant difference in the results obtained when operated with single segment or multiple segments (single segment: MD = 61.16, 95% CI [56.10, 66.22], multiple segments: MD = 52.14, 95% CI [48.39, 55.88]). CONCLUSION: The meta-analysis provided evidence of the improved quality of life after thoracic sympathectomy for palmar hyperhidrosis.


Assuntos
Hiperidrose/cirurgia , Qualidade de Vida , Humanos , Hiperidrose/psicologia , Período Pós-Operatório , Simpatectomia , Procedimentos Cirúrgicos Torácicos
19.
Neuropeptides ; 79: 102000, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31864679

RESUMO

The neuropeptide galanin functions via three G-protein coupled receptors, Gal1-3-R. Both Gal1-R and 2-R are involved in pain signaling at the spinal level. Here a Gal2-R-EGFP transgenic (TG) mouse was generated and studied in pain tests and by characterizing Gal2-R expression in both sensory ganglia and spinal cord. After peripheral spared nerve injury, mechanical allodynia developed and was ipsilaterally similar between wild type (WT) and TG mice. A Gal2-R-EGFP-positive signal was primarily observed in small and medium-sized dorsal root ganglion (DRG) neurons and in spinal interneurons and processes. No significant difference in size distribution of DRG neuronal profiles was found between TG and WT mice. Both percentage and fluorescence intensity of Gal2-R-EGFP-positive neuronal profiles were overall significantly upregulated in ipsilateral DRGs as compared to contralateral DRGs. There was an ipsilateral reduction in substance P-positive and calcitonin gene-related peptide (CGRP)-positive neuronal profiles, and this reduction was more pronounced in TG as compared to WT mice. Moreover, Gal2-R-EGFP partly co-localized with three pain-related neuropeptides, CGRP, neuropeptide Y and galanin, both in intact and injured DRGs, and with galanin also in local neurons in the superficial dorsal horn. Taken together, the present results provide novel information on the localization and phenotype of DRG and spinal neurons expressing the second galanin receptor, Gal2-R, and on phenotypic changes following peripheral nerve injury. Gal2-R may also be involved in autoreceptor signaling.


Assuntos
Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Gânglios Espinais/metabolismo , Neurônios/metabolismo , Medula Espinal/metabolismo , Animais , Camundongos Transgênicos , Neurônios Aferentes/metabolismo , Neuropeptídeo Y/metabolismo , Neuropeptídeos/metabolismo , Substância P/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA