Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nat Methods ; 11(7): 749-55, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24880876

RESUMO

To measure cell-to-cell variation in protein-mediated functions, we developed an approach to conduct ∼10(3) concurrent single-cell western blots (scWesterns) in ∼4 h. A microscope slide supporting a 30-µm-thick photoactive polyacrylamide gel enables western blotting: settling of single cells into microwells, lysis in situ, gel electrophoresis, photoinitiated blotting to immobilize proteins and antibody probing. We applied this scWestern method to monitor single-cell differentiation of rat neural stem cells and responses to mitogen stimulation. The scWestern quantified target proteins even with off-target antibody binding, multiplexed to 11 protein targets per single cell with detection thresholds of <30,000 molecules, and supported analyses of low starting cell numbers (∼200) when integrated with FACS. The scWestern overcomes limitations of antibody fidelity and sensitivity in other single-cell protein analysis methods and constitutes a versatile tool for the study of complex cell populations at single-cell resolution.


Assuntos
Western Blotting/métodos , Análise de Célula Única/métodos , Animais , Diferenciação Celular , Proteínas de Fluorescência Verde/biossíntese , Células-Tronco Neurais/fisiologia , Ratos
2.
J Bacteriol ; 196(20): 3643-55, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25112473

RESUMO

Mutant phenotypes provide strong clues to the functions of the underlying genes and could allow annotation of the millions of sequenced yet uncharacterized bacterial genes. However, it is not known how many genes have a phenotype under laboratory conditions, how many phenotypes are biologically interpretable for predicting gene function, and what experimental conditions are optimal to maximize the number of genes with a phenotype. To address these issues, we measured the mutant fitness of 1,586 genes of the ethanol-producing bacterium Zymomonas mobilis ZM4 across 492 diverse experiments and found statistically significant phenotypes for 89% of all assayed genes. Thus, in Z. mobilis, most genes have a functional consequence under laboratory conditions. We demonstrate that 41% of Z. mobilis genes have both a strong phenotype and a similar fitness pattern (cofitness) to another gene, and are therefore good candidates for functional annotation using mutant fitness. Among 502 poorly characterized Z. mobilis genes, we identified a significant cofitness relationship for 174. For 57 of these genes without a specific functional annotation, we found additional evidence to support the biological significance of these gene-gene associations, and in 33 instances, we were able to predict specific physiological or biochemical roles for the poorly characterized genes. Last, we identified a set of 79 diverse mutant fitness experiments in Z. mobilis that are nearly as biologically informative as the entire set of 492 experiments. Therefore, our work provides a blueprint for the functional annotation of diverse bacteria using mutant fitness.


Assuntos
Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica/fisiologia , Aptidão Genética , Shewanella/metabolismo , Zymomonas/metabolismo , Proteínas de Bactérias/genética , Mutação , Shewanella/genética , Zymomonas/genética
3.
Anal Chem ; 86(20): 10429-36, 2014 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-25226230

RESUMO

Intratumor heterogeneity remains a major obstacle to effective cancer therapy and personalized medicine. Current understanding points to differential therapeutic response among subpopulations of tumor cells as a key challenge to successful treatment. To advance our understanding of how this heterogeneity is reflected in cell-to-cell variations in chemosensitivity and expression of drug-resistance proteins, we optimize and apply a new targeted proteomics modality, single-cell western blotting (scWestern), to a human glioblastoma cell line. To acquire both phenotypic and proteomic data on the same, single glioblastoma cells, we integrate high-content imaging prior to the scWestern assays. The scWestern technique supports thousands of concurrent single-cell western blots, with each assay comprised of chemical lysis of single cells seated in microwells, protein electrophoresis from those microwells into a supporting polyacrylamide (PA) gel layer, and in-gel antibody probing. We systematically optimize chemical lysis and subsequent polyacrylamide gel electrophoresis (PAGE) of the single-cell lysate. The scWestern slides are stored for months then reprobed, thus allowing archiving and later analysis as relevant to sparingly limited, longitudinal cell specimens. Imaging and scWestern analysis of single glioblastoma cells dosed with the chemotherapeutic daunomycin showed both apoptotic (cleaved caspase 8- and annexin V-positive) and living cells. Intriguingly, living glioblastoma subpopulations show up-regulation of a multidrug resistant protein, P-glycoprotein (P-gp), suggesting an active drug efflux pump as a potential mechanism of drug resistance. Accordingly, linking of phenotype with targeted protein analysis with single-cell resolution may advance our understanding of drug response in inherently heterogeneous cell populations, such as those anticipated in tumors.


Assuntos
Western Blotting , Glioblastoma/diagnóstico , Análise de Célula Única , Antineoplásicos/uso terapêutico , Apoptose , Linhagem Celular Tumoral , Eletroforese em Gel Bidimensional , Glioblastoma/tratamento farmacológico , Humanos
4.
PLoS Genet ; 7(11): e1002385, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22125499

RESUMO

Most genes in bacteria are experimentally uncharacterized and cannot be annotated with a specific function. Given the great diversity of bacteria and the ease of genome sequencing, high-throughput approaches to identify gene function experimentally are needed. Here, we use pools of tagged transposon mutants in the metal-reducing bacterium Shewanella oneidensis MR-1 to probe the mutant fitness of 3,355 genes in 121 diverse conditions including different growth substrates, alternative electron acceptors, stresses, and motility. We find that 2,350 genes have a pattern of fitness that is significantly different from random and 1,230 of these genes (37% of our total assayed genes) have enough signal to show strong biological correlations. We find that genes in all functional categories have phenotypes, including hundreds of hypotheticals, and that potentially redundant genes (over 50% amino acid identity to another gene in the genome) are also likely to have distinct phenotypes. Using fitness patterns, we were able to propose specific molecular functions for 40 genes or operons that lacked specific annotations or had incomplete annotations. In one example, we demonstrate that the previously hypothetical gene SO_3749 encodes a functional acetylornithine deacetylase, thus filling a missing step in S. oneidensis metabolism. Additionally, we demonstrate that the orphan histidine kinase SO_2742 and orphan response regulator SO_2648 form a signal transduction pathway that activates expression of acetyl-CoA synthase and is required for S. oneidensis to grow on acetate as a carbon source. Lastly, we demonstrate that gene expression and mutant fitness are poorly correlated and that mutant fitness generates more confident predictions of gene function than does gene expression. The approach described here can be applied generally to create large-scale gene-phenotype maps for evidence-based annotation of gene function in prokaryotes.


Assuntos
Proteínas de Bactérias/genética , Elementos de DNA Transponíveis/genética , Aptidão Genética/genética , Mutagênese/genética , Shewanella/genética , Proteínas de Bactérias/metabolismo , Perfilação da Expressão Gênica , Regulação Bacteriana da Expressão Gênica , Estudos de Associação Genética , Genoma Bacteriano , Anotação de Sequência Molecular , Família Multigênica/genética , Mutação , Análise de Sequência com Séries de Oligonucleotídeos , Óperon/genética , Fenótipo , Transdução de Sinais
5.
JMIR Form Res ; 1(1): e2, 2017 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-30684401

RESUMO

BACKGROUND: Patient noncompliance with therapy, treatments, and appointments represents a significant barrier to improving health care delivery and reducing the cost of care. One method to improve therapeutic adherence is to improve feedback loops in getting clinically acute events and issues to the relevant clinical providers as necessary (ranging from detecting hypoglycemic events for patients with diabetes to notifying the provider when patients are out of medications). Patients often don't know which information should prompt a call to their physician and proactive checks by the clinics themselves can be very resource intensive. We hypothesized that a two-way SMS system combined with a platform web service for providers would enable both high patient engagement but also the ability to detect relevant clinical alerts. OBJECTIVE: The objectives of this study are to develop a feasible two-way automated SMS/phone call + web service platform for patient-provider communication, and then study the feasibility and acceptability of the Epharmix platform. First, we report utilization rates over the course of the first 18 months of operation including total identified clinically significant events, and second, review results of patient user-satisfaction surveys for interventions for patients with diabetes, COPD, congestive heart failure, hypertension, surgical site infections, and breastfeeding difficulties. METHODS: To test this question, we developed a web service + SMS/phone infrastructure ("Epharmix"). Utilization results were measured based on the total number of text messages or calls sent and received, with percentage engagement defined as a patient responding to a text message at least once in a given week, including the number of clinically significant alerts generated. User satisfaction surveys were sent once per month over the 18 months to measure satisfaction with the system, frequency and degree of communication. Descriptive statistics were used to describe the above information. RESULTS: In total, 28,386 text messages and 24,017 calls were sent to 929 patients over 9 months. Patients responded to 80% to 90% of messages allowing the system to detect 1164 clinically significant events. Patients reported increased satisfaction and communication with their provider. Epharmix increased the number of patient-provider interactions to over 10 on average in any given month for patients with diabetes, COPD, congestive heart failure, hypertension, surgical site infections, and breastfeeding difficulties. CONCLUSIONS: Engaging high-risk patients remains a difficult process that may be improved through novel, digital health interventions. The Epharmix platform enables increased patient engagement with very low risk to improve clinical outcomes. We demonstrated that engagement among high-risk populations is possible when health care comes conveniently to where they are.

6.
JMIR Diabetes ; 2(2): e15, 2017 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-30291063

RESUMO

BACKGROUND: Type II diabetes mellitus (T2DM) presents a major disease burden in the United States. Outpatient glycemic control among patients with T2DM remains difficult. Telemedicine shows great potential as an adjunct therapy to aid in glycemic control in real-world settings. OBJECTIVE: We aimed to explore the effectiveness of EpxDiabetes, a novel digital health intervention, in improving hemoglobin A1c (HbA1c) and fasting blood glucose (FBG) among patients with uncontrolled diabetes. METHODS: We recruited 396 patients from a community clinic in St. Louis, Missouri, from a database of patients diagnosed with T2DM and with a most recent HbA1c >7% as part of a quality improvement project. An automated call or text-messaging system was used to monitor patient-reported FBG. If determined to be elevated, care managers were notified by email, text, or electronic medical record alert. Participants self-reported their FBG data by replying to EpxDiabetes automated phone calls or text messages. Data were subsequently analyzed, triaged, and shared with providers to enable appropriate follow-up and care plan adjustments. Absolute HbA1c reduction, patient engagement, and absolute patient-reported FBG reduction were examined at approximately 6 months post implementation. RESULTS: EpxDiabetes had an average 95.6% patient response rate to messages at least once per month and an average 71.1% response rate to messages at least once per week. Subsequent HbA1c drop with EpxDiabetes use over 4 months was -1.15% (95% CI -1.58 to -0.71) for patients with HbA1c >8% at baseline compared to the change in HbA1c over 4 months prior to the implementation of EpxDiabetes of only -0.005 points (95% CI -0.28 to 0.27), P=.0018. CONCLUSIONS: EpxDiabetes may help reduce HbA1c in patients with high HbA1c baselines (>8%). The intervention demonstrates high patient engagement sustainable for at least 6 months.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA