Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 962
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Plant Cell ; 35(4): 1241-1258, 2023 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-36648110

RESUMO

In Arabidopsis thaliana, female gametophyte (FG) development is accompanied by the formation and expansion of the large vacuole in the FG; this is essential for FG expansion, nuclear polar localization, and cell fate determination. Arabidopsis VACUOLELESS GAMETOPHYTES (VLG) facilitates vesicular fusion to form large vacuole in the FG, but the regulation of VLG remains largely unknown. Here, we found that gain-of-function mutation of BRASSINOSTEROID INSENSITIVE2 (BIN2) (bin2-1) increases VLG abundance to induce the vacuole formation at stage FG1, and leads to abortion of FG. Loss-of-function mutation of BIN2 and its homologs (bin2-3 bil1 bil2) reduced VLG abundance and mimicked vlg/VLG phenotypes. Knocking down VLG in bin2-1 decreased the ratio of aberrant vacuole formation at stage FG1, whereas FG1-specific overexpression of VLG mimicked the bin2-1 phenotype. VLG partially rescued the bin2-3 bil1 bil2 phenotype, demonstrating that VLG acts downstream of BIN2. Mutation of VLG residues that are phosphorylated by BIN2 altered VLG stability and a phosphorylation mimic of VLG causes similar defects as did bin2-1. Therefore, BIN2 may function by interacting with and phosphorylating VLG in the FG to enhance its stability and abundance, thus facilitating vacuole formation. Our findings provide mechanistic insight into how the BIN2-VLG module regulates the spatiotemporal formation of the large vacuole in FG development.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/fisiologia , Proteínas de Arabidopsis/metabolismo , Brassinosteroides/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Células Germinativas Vegetais/metabolismo , Óvulo Vegetal/genética , Óvulo Vegetal/metabolismo , Fosforilação , Proteínas Quinases/metabolismo , Transdução de Sinais/genética , Vacúolos/metabolismo
2.
Proc Natl Acad Sci U S A ; 120(6): e2221637120, 2023 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-36716376

RESUMO

Lipids establish the specialized thylakoid membrane of chloroplast in eukaryotic photosynthetic organisms, while the molecular basis of lipid transfer from other organelles to chloroplast remains further elucidation. Here we revealed the structural basis of Arabidopsis Sec14 homology proteins AtSFH5 and AtSFH7 in transferring phosphatidic acid (PA) from endoplasmic reticulum (ER) to chloroplast, and whose function in regulating the lipid composition of chloroplast and thylakoid development. AtSFH5 and AtSFH7 localize at both ER and chloroplast, whose deficiency resulted in an abnormal chloroplast structure and a decreased thickness of stacked thylakoid membranes. We demonstrated that AtSFH5, but not yeast and human Sec14 proteins, could specifically recognize and transfer PA in vitro. Crystal structures of the AtSFH5-Sec14 domain in complex with L-α-phosphatidic acid (L-α-PA) and 1,2-dipalmitoyl-sn-glycero-3-phosphate (DPPA) revealed that two PA ligands nestled in the central cavity with different configurations, elucidating the specific binding mode of PA to AtSFH5, different from the reported phosphatidylethanolamine (PE)/phosphatidylcholine (PC)/phosphatidylinositol (PI) binding modes. Quantitative lipidomic analysis of chloroplast lipids showed that PA and monogalactosyldiacylglycerol (MGDG), particularly the C18 fatty acids at sn-2 position in MGDG were significantly decreased, indicating a disrupted ER-to-plastid (chloroplast) lipid transfer, under deficiency of AtSFH5 and AtSFH7. Our studies identified the role and elucidated the structural basis of plant SFH proteins in transferring PA between organelles, and suggested a model for ER-chloroplast interorganelle phospholipid transport from inherent ER to chloroplast derived from endosymbiosis of a cyanobacteriumproviding a mechanism involved in the adaptive evolution of cellular plastids.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Cloroplastos , Ácidos Fosfatídicos , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Cloroplastos/metabolismo , Ácidos Fosfatídicos/metabolismo , Tilacoides/metabolismo
3.
Brief Bioinform ; 24(4)2023 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-37344167

RESUMO

Adverse drug events (ADEs) are common in clinical practice and can cause significant harm to patients and increase resource use. Natural language processing (NLP) has been applied to automate ADE detection, but NLP systems become less adaptable when drug entities are missing or multiple medications are specified in clinical narratives. Additionally, no Chinese-language NLP system has been developed for ADE detection due to the complexity of Chinese semantics, despite ˃10 million cases of drug-related adverse events occurring annually in China. To address these challenges, we propose DKADE, a deep learning and knowledge graph-based framework for identifying ADEs. DKADE infers missing drug entities and evaluates their correlations with ADEs by combining medication orders and existing drug knowledge. Moreover, DKADE can automatically screen for new adverse drug reactions. Experimental results show that DKADE achieves an overall F1-score value of 91.13%. Furthermore, the adaptability of DKADE is validated using real-world external clinical data. In summary, DKADE is a powerful tool for studying drug safety and automating adverse event monitoring.


Assuntos
Aprendizado Profundo , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Humanos , Reconhecimento Automatizado de Padrão , Semântica , Processamento de Linguagem Natural
4.
Blood ; 141(7): 766-786, 2023 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-36322939

RESUMO

Extramedullary infiltration (EMI) is a concomitant manifestation that may indicate poor outcome of acute myeloid leukemia (AML). The underlying mechanism remains poorly understood and therapeutic options are limited. Here, we employed single-cell RNA sequencing on bone marrow (BM) and EMI samples from a patient with AML presenting pervasive leukemia cutis. A complement C1Q+ macrophage-like leukemia subset, which was enriched within cutis and existed in BM before EMI manifestations, was identified and further verified in multiple patients with AML. Genomic and transcriptional profiling disclosed mutation and gene expression signatures of patients with EMI that expressed high levels of C1Q. RNA sequencing and quantitative proteomic analysis revealed expression dynamics of C1Q from primary to relapse. Univariate and multivariate analysis demonstrated adverse prognosis significance of C1Q expression. Mechanistically, C1Q expression, which was modulated by transcription factor MAF BZIP transcription factor B, endowed leukemia cells with tissue infiltration ability, which could establish prominent cutaneous or gastrointestinal EMI nodules in patient-derived xenograft and cell line-derived xenograft models. Fibroblasts attracted migration of the C1Q+ leukemia cells through C1Q-globular C1Q receptor recognition and subsequent stimulation of transforming growth factor ß1. This cell-to-cell communication also contributed to survival of C1Q+ leukemia cells under chemotherapy stress. Thus, C1Q served as a marker for AML with adverse prognosis, orchestrating cancer infiltration pathways through communicating with fibroblasts and represents a compelling therapeutic target for EMI.


Assuntos
Complemento C1q , Leucemia Mieloide Aguda , Humanos , Proteômica , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Medula Óssea/metabolismo , Prognóstico , Doença Crônica , Recidiva
5.
PLoS Genet ; 18(7): e1010320, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35877676

RESUMO

Embryonic development is a key developmental event in plant sexual reproduction; however, regulatory networks of plant early embryonic development, particularly the effects and functional mechanisms of phospholipid molecules are still unknown due to the limitation of sample collection and analysis. We innovatively applied the microspore-derived in vitro embryogenesis of Brassica napus and revealed the dynamics of phospholipid molecules, especially phosphatidic acid (PA, an important second messenger that plays an important role in plant growth, development, and stress responses), at different embryonic developmental stages by using a lipidomics approach. Further analysis of Arabidopsis mutants deficiency of CDS1 and CDS2 (cytidinediphosphate diacylglycerol synthase, key protein in PA metabolism) revealed the delayed embryonic development from the proembryo stage, indicating the crucial effect of CDS and PA metabolism in early embryonic development. Decreased auxin level and disturbed polar localization of auxin efflux carrier PIN1 implicate that CDS-mediated PA metabolism may regulate early embryogenesis through modulating auxin transport and distribution. These results demonstrate the dynamics and importance of phospholipid molecules during embryo development, and provide informative clues to elucidate the regulatory network of embryogenesis.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Diglicerídeos , Desenvolvimento Embrionário , Regulação da Expressão Gênica de Plantas , Ácidos Indolacéticos/metabolismo , Ácidos Fosfatídicos/metabolismo
6.
PLoS Genet ; 18(3): e1010077, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35245283

RESUMO

Ovule initiation determines the maximum ovule number and has great impact on seed number and yield. However, the regulation of ovule initiation remains largely elusive. We previously reported that most of the ovule primordia initiate asynchronously at floral stage 9 and PINFORMED1 (PIN1) polarization and auxin distribution contributed to this process. Here, we further demonstrate that a small amount of ovule primordia initiate at floral stage 10 when the existing ovules initiated at floral stage 9 start to differentiate. Genetic analysis revealed that the absence of PIN3 function leads to the reduction in pistil size and the lack of late-initiated ovules, suggesting PIN3 promotes the late ovule initiation process and pistil growth. Physiological analysis illustrated that, unlike picloram, exogenous application of NAA can't restore these defective phenotypes, implying that PIN3-mediated polar auxin transport is required for the late ovule initiation and pistil length. qRT-PCR results indicated that the expression of SEEDSTICK (STK) is up-regulated under auxin analogues treatment while is down-regulated in pin3 mutants. Meanwhile, overexpressing STK rescues pin3 phenotypes, suggesting STK participates in PIN3-mediated late ovule initiation possibly by promoting pistil growth. Furthermore, brassinosteroid influences the late ovule initiation through positively regulating PIN3 expression. Collectively, this study demonstrates that PIN3 promotes the late ovule initiation and contributes to the extra ovule number. Our results give important clues for increasing seed number and yield of cruciferous and leguminous crops.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Ácidos Indolacéticos/metabolismo , Proteínas de Domínio MADS/genética , Óvulo Vegetal/genética
7.
Anal Chem ; 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38324019

RESUMO

Cascade molecular events in complex systems are of vital importance for enhancing molecular diagnosis and information processing. However, the conversion of a cascaded biosensing system into a multilayer encrypted molecular keypad lock remains a significant challenge in the development of molecular logic devices. In this study, we present a photocleavable DNA nanotube-based dual-amplified resonance Rayleigh scattering (RRS) system for detecting microRNA-126 (miR-126). The cascading dual-amplification biosensing system provides a multilayer-encrypted prototype with the functionality of a molecular computing cascade keypad lock. RRS signals were greatly amplified by using photocleavable DNA nanotubes and enzyme-assisted strand displacement amplification (SDA). In the presence of miR-126, enzyme-assisted SDA produced numerous identical nucleotide fragments as the target, which were then specifically attached to magnetic beads through the DNA nanotube by using a Y-shaped DNA scaffold. Upon ultraviolet irradiation, the DNA nanotube was released into the solution, resulting in an increase in the intensity of the RRS signal. This strategy demonstrated a low limit of detection (0.16 fM) and a wide dynamic range (1 fM to 1 nM) for miR-126. Impressively, the enzyme-assisted SDA offers a molecular computing model for generating the target pool, which serves as the input element for unlocking the system. By cascading the molecular computing process, we successfully constructed a molecular keypad lock with a multilevel authentication technique. The proposed system holds great potential for applications in molecular diagnosis and information security, indicating significant value in integrating molecular circuits for intelligent sensing.

8.
J Transl Med ; 22(1): 501, 2024 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-38797842

RESUMO

As a key factor in determining testis size and sperm number, sertoli cells (SCs) play a crucial role in male infertility. Heat stress (HS) reduces SCs counts, negatively impacting nutrient transport and supply to germ cells, and leading to spermatogenesis failure in humans and animals. However, how HS affects the number of SCs remains unclear. We hypothesized that changes in SC metabolism contribute to the adverse effects of HS. In this study, we first observed an upregulation of arachidonic acid (AA), an unsaturated fatty acid after HS exposure by LC-MS/MS metabolome detection. By increasing ROS levels, expression of KEAP1 and NRF2 proteins as well as LC3 and LAMP2, 100 µM AA induced autophagy in SCs by activating oxidative stress (OS). We observed adverse effects of AA on mitochondria under HS with a decrease of mitochondrial number and an increase of mitochondrial membrane potential (MMP). We also found that AA alternated the oxygen transport and absorption function of mitochondria by increasing glycolysis flux and decreasing oxygen consumption rate as well as the expression of mitochondrial electron transport chain (ETC) proteins Complex I, II, V. However, pretreatment with 5 mM NAC (ROS inhibitor) and 2 µM Rotenone (mitochondrial ETC inhibitor) reversed the autophagy induced by AA. In summary, AA modulates autophagy in SCs during HS by disrupting mitochondrial ETC function, inferring that the release of AA is a switch-like response, and providing insight into the underlying mechanism of high temperatures causing male infertility.


Assuntos
Ácido Araquidônico , Autofagia , Resposta ao Choque Térmico , Mitocôndrias , Células de Sertoli , Regulação para Cima , Masculino , Células de Sertoli/metabolismo , Células de Sertoli/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Animais , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Resposta ao Choque Térmico/efeitos dos fármacos , Ácido Araquidônico/metabolismo , Regulação para Cima/efeitos dos fármacos , Transporte de Elétrons/efeitos dos fármacos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo
9.
New Phytol ; 2024 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-38702992

RESUMO

Leaf senescence is a complex process regulated by developmental and environmental factors, and plays a pivotal role in the development and life cycle of higher plants. Casein kinase 1 (CK1) is a highly conserved serine/threonine protein kinase in eukaryotes and functions in various cellular processes including cell proliferation, light signaling and hormone effects of plants. However, the biological function of CK1 in plant senescence remains unclear. Through systemic genetic and biochemical studies, we here characterized the function of Arabidopsis EL1-like (AEL), a CK1, in promoting leaf senescence by stimulating ethylene biosynthesis through phosphorylating transcription factor WRKY22. Seedlings lacking or overexpressing AELs presented delayed or accelerated leaf senescence, respectively. AELs interact with and phosphorylate WRKY22 at Thr57, Thr60 and Ser69 residues to enhance whose transactivation activity. Being consistent, increased or suppressed phosphorylation of WRKY22 resulted in the promoted or delayed leaf senescence. WRKY22 directly binds to promoter region and stimulates the transcription of 1-amino-cyclopropane-1-carboxylate synthase 7 gene to promote ethylene level and hence leaf senescence. Our studies demonstrated the crucial role of AEL-mediated phosphorylation in regulating ethylene biosynthesis and promoting leaf senescence by enhancing WRKY22 transactivation activity, which helps to elucidate the fine-controlled ethylene biosynthesis and regulatory network of leaf senescence.

10.
Respir Res ; 25(1): 218, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38789950

RESUMO

OBJECTIVE: To evaluate the predictive value of PD-1 expression in T lymphocytes for rehospitalization due to acute exacerbations of COPD (AECOPD) in discharged patients. METHODS: 115 participants hospitalized with COPD (average age 71.8 ± 6.0 years) were recruited at Fujian Provincial Hospital. PD1+T lymphocytes proportions (PD1+T%), baseline demographics and clinical data were recorded at hospital discharge. AECOPD re-admission were collected at 1-year follow-up. Kaplan-Meier analysis compared the time to AECOPD readmissions among groups stratified by PD1+T%. Multivariable Cox proportional hazards regression and stratified analysis determined the correlation between PD1+T%, potential confounders, and AECOPD re-admission. ROC and DCA evaluated PD1+T% in enhancing the clinical predictive values of Cox models, BODE and CODEX. RESULTS: 68 participants (59.1%) were AECOPD readmitted, those with AECOPD readmission exhibited significantly elevated baseline PD-1+CD4+T/CD4+T% and PD-1+CD8 + T/CD8 + T% compared to non-readmitted counterparts. PD1+ T lymphocyte levels statistically correlated with BODE and CODEX indices. Kaplan-Meier analysis demonstrated that those in Higher PD1+ T lymphocyte proportions had reduced time to AECOPD readmission (logRank p < 0.05). Cox analysis identified high PD1+CD4+T and PD1+CD8+T ratios as risk factors of AECOPD readmission, with hazard ratios of 1.384(95%CI [1.043-1.725]) and 1.401(95%CI [1.013-1.789]), respectively. Notably, in patients aged < 70 years and with fewer than twice AECOPD episodes in the previous year, high PD1+T lymphocyte counts significantly increased risk for AECOPD readmission(p < 0.05). The AECOPD readmission predictive model, incorporating PD1+T% exhibited superior discrimination to the Cox model, BODE index and CODEX index, AUC of ROC were 0.763(95%CI [0.633-0.893]) and 0.734(95%CI [0.570-0.899]) (DeLong's test p < 0.05).The DCA illustrates that integrating PD1+T% into models significantly enhances the utility in aiding clinical decision-making. CONCLUSION: Evaluation of PD1+ lymphocyte proportions offer a novel perspective for identifying high-risk COPD patients, potentially providing insights for COPD management. TRIAL REGISTRATION: Chinese Clinical Trial Registry (ChiCTR, URL: www.chictr.org.cn/ ), Registration number: ChiCTR2200055611 Date of Registration: 2022-01-14.


Assuntos
Receptor de Morte Celular Programada 1 , Doença Pulmonar Obstrutiva Crônica , Humanos , Doença Pulmonar Obstrutiva Crônica/sangue , Doença Pulmonar Obstrutiva Crônica/diagnóstico , Doença Pulmonar Obstrutiva Crônica/imunologia , Masculino , Feminino , Idoso , Receptor de Morte Celular Programada 1/metabolismo , Estudos Prospectivos , Pessoa de Meia-Idade , Progressão da Doença , Readmissão do Paciente , Estudos de Coortes , Hospitalização/estatística & dados numéricos , Hospitalização/tendências , Idoso de 80 Anos ou mais , Seguimentos , Linfócitos T/imunologia , Linfócitos T/metabolismo
11.
J Gen Intern Med ; 39(2): 176-185, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37507552

RESUMO

BACKGROUND: Upstream socioeconomic circumstances including food insecurity and food desert are important drivers of community-level health disparities in cardiovascular mortality let alone traditional risk factors. The study assessed the association between differences in food environment quality and cardiovascular mortality in US adults. DESIGN: Retrospective analysis of the association between cardiovascular mortality among US adults aged 45 and above and food environment quality, measured as the food environment index (FEI), in 2615 US counties. FEI was measured by equal weights of food insecurity (limited access to a reliable food source) and food desert (limited access to healthy food), ranging from 0 (worst) to 10 (best). Age-adjusted cardiovascular mortality rates per 100,000 adults aged 45 and above in the calendar year 2017-2019. County-level association between CVD mortality rate and FEI was modeled using generalized linear regression. Data were weighted using county population. RESULT: Median CVD deaths per 100,000 population were 645.4 (IQR 561.5, 747.0) among adults aged 45 years and above across US counties in 2017-2019. About 12.8% (IQR 10.7%, 15.1%) of residents were food insecure and 6.3% (IQR 3.6%, 9.9%) were living in food desert areas. Comparing counties by FEI quartiles, the CVD mortality rate was higher in the least healthy FE counties (704.3 vs 598.6 deaths per 100,000 population) compared to the healthiest FE counties. One unit increase in FEI was associated with - 12.95 CVD deaths/100,000 population. In the subgroup analysis of counties with higher income inequality, the healthiest food environment was associated with 46.4 lower CVD deaths/100,000 population than the least healthy food environment. One unit increase in FEI in counties with higher income inequality was associated with a fivefold decrease in CVD mortality difference in African American counties (- 18.4 deaths/100,000 population) when compared to non-African American counties (- 3.63 deaths/100,000 population). CONCLUSION: In this retrospective multi-county study in the USA, a higher food environment index was significantly associated with lower cardiovascular mortality.


Assuntos
Doenças Cardiovasculares , Adulto , Humanos , Estados Unidos/epidemiologia , Estudos Retrospectivos , Renda , Meio Ambiente , Nível de Saúde
12.
Chemphyschem ; 25(5): e202300693, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38183359

RESUMO

Lithium-sulfur batteries (LSBs) are considered as the development direction of the new generation energy storage system due to their high energy density and low cost. The slow redox kinetics of sulfur and the shuttle effect of lithium polysulfide (LiPS) are considered to be the main obstacles to the practical application of LSBs. Transition-metal sulfide as the cathode host can improve the Li-S redox chemistry. However, there has been no investigation of the application of FeS2 host in Li-S redox chemistry. Applying the first-principles calculations, we investigated the formation energy, band gap, Li+ diffusion, adsorption energy, catalytic performance and Li2 S decomposition barrier of FeAx S2-x (A=N, P, O, Se; x=0, 0.125, 0.25, 0.375) to explore the Li-S redox chemistry and finally select excellent host material. FeA0.25 S1.75 (A=P, Se) has a low Li+ diffusion barrier and superior electronic conductivity. FeO0.25 S1.75 is more favorable for LiPS adsorption, followed by FeP0.25 S1.75 . FeP0.25 S1.75 (001) shows a low overpotential for the Li-S redox chemistry. In summary, FeP0.25 S1.75 has more application potential in LSBs due to its physical and chemical properties, followed by FeSe0.25 S1.75 . This work provides theoretical guidance for the design and selection of the sulfur cathode host materials in LSBs.

13.
Macromol Rapid Commun ; 45(11): e2400045, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38365211

RESUMO

Non-traditional intrinsic luminescent (NTIL) polymer is an emerging field, and its color-tunable modification is highly desirable but still rarely investigated. Here, a click chemistry approach for the color-tunable modifications of NTIL polymers by introducing clickable polymerization-induced emission luminogen (PIEgen), is demonstrated. Through Cu-catalyzed azide-alkyne cycloaddition click chemistry, a series of PIEgens is successful prepared, which is further polymerized via reversible addition-fragmentation chain transfer (RAFT) polymerization. Interestingly, after clickable modification, these monomers are nonemissive in both solution and aggregation states; while, the corresponding polymers exhibit intriguing aggregation-induced emission (AIE) characteristics, confirming their PIEgen characteristics. By varying alkynyl substitutions, color-tunable NTIL polymers are achieved with emission wavelength varying from 448 to 498 nm, revealing a series of PIEgens and verifying the importance of modification of NTIL polymers. Further luminescence energy transfer application is carried out as well. This work therefore designs a series of clickable PIEgens and opens a new avenue for the modification of NTIL polymers via click chemistry, which may cause inspirations to the research fields including luminescent polymer, NTIL, click chemistry, AIE and modification.


Assuntos
Química Click , Cor , Luminescência , Polimerização , Polímeros , Polímeros/química , Polímeros/síntese química , Estrutura Molecular , Catálise , Substâncias Luminescentes/química , Substâncias Luminescentes/síntese química , Azidas/química , Alcinos/química
14.
Phys Chem Chem Phys ; 26(3): 2249-2259, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38165279

RESUMO

Lithium-sulfur batteries (LSBs) are one of the most promising energy storage devices with high energy density. However, their application and commercialization are hampered by the slow Li-S redox chemistry. Fe0.875M0.125S2 (M = Ti, V), as the sulfur cathode host, enhances the Li-S redox chemistry. FeS2 with Pa3̄ is transformed into Li2FeS2 with P3̄m1 after discharge. The structure changes and physicochemical properties during Fe0.875M0.125S2 discharge process are further investigated to screen out the sulfur cathode host materials with the best comprehensive properties. The discharge structure of Fe0.875M0.125S2 is verified by the thermodynamic stability of Li-deficient phases, voltage and capacity based on Monte Carlo methods. Fe0.875M0.125S2 with Pa3̄ is transformed into Li2Fe0.875M0.125S2 with P3̄m1 after discharge. Using the first-principles calculations, the physicochemical properties of Li2Fe0.875M0.125S2 are systematically investigated, including the formation energy, voltage, theoretical capacity, electrical conductivity, Li+ diffusion, catalytic performance and Li2S oxidation decomposition. The average redox voltage of Li2Fe0.875V0.125S2 is higher than that of Li2Fe0.875Ti0.125S2. Li2Fe0.875M0.125S2 shows metallic properties. Li2Fe0.875V0.125S2 is more beneficial to the reduction reaction of Li2S2 and Li2S oxidation decomposition. Fe0.875V0.125S2 has more potential as the sulfur cathode host than Fe0.875Ti0.125S2 in LSBs. A new strategy for the selection of the sulfur cathode host material for LSBs is provided by this work.

15.
J Nat Prod ; 87(6): 1540-1547, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38832657

RESUMO

Phenazines are aromatic compounds with antifungal and cytotoxic activities. Phenazines incorporating phenazine 1-carboxylic acid have widespread applications in agriculture, medicine, and industry. Griseoluteic acid is a cytotoxic compound secreted by Streptomyces griseoluteus P510, displaying potential medical applications. However, the biosynthetic pathway of griseoluteic acid has not been elucidated, limiting its development and application. In this study, a conserved phenazine biosynthetic gene cluster of S. griseoluteus P510 was identified through genomic analysis. Subsequently, its was confirmed that the four essential modification enzymes SgpH, SgpI, SgpK, and SgpL convert phenazine-1,6-dicarboxylic acid into griseoluteic acid by heterologous expression in Escherichia coli. Moreover, the biosynthetic pathway of griseoluteic acid was established in Pseudomonas chlororaphis characterized by a high growth rate and synthesis efficiency of phenazines, laying the foundation for the efficient production of griseoluteic acid.


Assuntos
Fenazinas , Fenazinas/metabolismo , Fenazinas/química , Estrutura Molecular , Família Multigênica , Vias Biossintéticas , Streptomyces/metabolismo , Streptomyces/genética , Streptomyces griseus/metabolismo , Pseudomonas chlororaphis/metabolismo , Escherichia coli/metabolismo
16.
BMC Pulm Med ; 24(1): 291, 2024 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-38909192

RESUMO

OBJECTIVE: To investigate the association between meteorological data three days before admission and the status of sputum pathogens culture in hospitalized patients with Acute exacerbation of Chronic obstructive pulmonary disease (AECOPD) and respiratory infections. METHODS: Data from 1,370 AECOPD patients (80.66% males, approximately 80% age > 70) with respiratory infections hospitalized in Fujian Provincial Hospital between December 2013 and December 2019 were collected. This cohort comprised, along with concurrent meteorological data from Fuzhou. Group differences were analyzed to compare the meteorological data three days prior to admission between patients with positive sputum pathogen cultures and those without. Logistic regression models were employed to investigate the association between meteorological parameters and the status of sputum pathogen cultures in patients with AECOPD and respiratory infections. Sensitivity analyses was conducted among the hospitalized patients from 2013 to 2016 and 2017-2019. Stratified analysis was performed to explore the factors affecting the effect of temperature differences and their interactions. RESULTS: 578(42.19%) cases had a positive sputum culture report indicating pathogen growth. 323 cases were found with Gram-negative bacteria, 160 with Gram-positive bacteria, and 114 with fungi. Uni-variate analysis revealed statistical differences in DTD three days prior to admission (DTD-3d) between the positive and negative sputum culture groups (p = 0.019). Multivariate analysis indicated that an increase in the risk of positive sputum pathogen cultures was associated with greater DTD three days before admission (DTD-3d), with OR1.657 (95%CI [ 1.328-1.981]). The risk of positive sputum pathogen cultures was higher in groups with greater DTD-3d. The findings were consistent across different admission periods. Stratified analysis showed that patients without respiratory failure were more affected by DTD-3d, and an interaction effect was observed (p < 0.001). CONCLUSION: In coastal areas, the diurnal temperature difference three days prior to admission affects the sputum pathogen status in AECOPD patients with respiratory infections.


Assuntos
Hospitalização , Doença Pulmonar Obstrutiva Crônica , Escarro , Temperatura , Humanos , Escarro/microbiologia , Masculino , Doença Pulmonar Obstrutiva Crônica/microbiologia , Doença Pulmonar Obstrutiva Crônica/fisiopatologia , Estudos Retrospectivos , Idoso , Feminino , China , Pessoa de Meia-Idade , Infecções Respiratórias/microbiologia , Infecções Respiratórias/diagnóstico , Idoso de 80 Anos ou mais , Progressão da Doença , Bactérias Gram-Negativas/isolamento & purificação , Modelos Logísticos , Bactérias Gram-Positivas/isolamento & purificação
17.
Int Arch Occup Environ Health ; 97(3): 331-339, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38411670

RESUMO

BACKGROUND: Previous epidemiological studies about the relationship between per- and polyfluoroalkyl substances (PFAS) concentrations and adolescent asthma have typically examined single PFAS, without considering the mixtures effects of PFAS. METHODS: Using data from the 2013-2018 National Health and Nutrition Examination Survey (NHANES), 886 adolescents aged 12-19 years were included in this study. We explored the association between PFAS mixture concentrations and adolescent asthma using weighted quantile sum (WQS) regression and Bayesian kernel machine regression (BKMR) models, respectively. RESULTS: After adjusting for confounders, the results of the WQS regression and BKMR models were consistent, with mixed exposure to the five PFAS not significantly associated with asthma in all adolescents. The association remained nonsignificant in the subgroup analysis by sex. CONCLUSIONS: Our study demonstrated no significant association between mixed exposure to PFAS and adolescent asthma, and more large cohort studies are needed to confirm this in the future.


Assuntos
Asma , Fluorocarbonos , Humanos , Adolescente , Teorema de Bayes , Inquéritos Nutricionais , Exposição Ambiental/efeitos adversos , Asma/epidemiologia
18.
PLoS Genet ; 17(12): e1009905, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34879072

RESUMO

Phospholipase D (PLD) hydrolyzes membrane phospholipids and is crucial in various physiological processes and transduction of different signals. Secretory phospholipases play important roles in mammals, however, whose functions in plants remain largely unknown. We previously identified a rice secretory PLD (spPLD) that harbors a signal peptide and here we reported the secretion and function of spPLD in rice heading time regulation. Subcellular localization analysis confirmed the signal peptide is indispensable for spPLD secretion into the extracellular spaces, where spPLD hydrolyzes substrates. spPLD overexpression results in delayed heading time which is dependent on its secretory character, while suppression or deficiency of spPLD led to the early heading of rice under both short-day and long-day conditions, which is consistent with that spPLD overexpression/suppression indeed led to the reduced/increased Hd3a/RFT1 (Arabidopsis Flowing Locus T homolog) activities. Interestingly, rice Hd3a and RFT1 bind to phosphatidylcholines (PCs) and a further analysis by lipidomic approach using mass spectrometry revealed the altered phospholipids profiles in shoot apical meristem, particularly the PC species, under altered spPLD expressions. These results indicate the significance of secretory spPLD and help to elucidate the regulatory network of rice heading time.


Assuntos
Regulação da Expressão Gênica de Plantas , Oryza/crescimento & desenvolvimento , Fosfatidilcolinas/metabolismo , Fosfolipase D/metabolismo , Proteínas de Plantas/metabolismo , Oryza/enzimologia , Fosfolipase D/genética , Fotoperíodo , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas
19.
Biochem Genet ; 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38767822

RESUMO

To investigate the impact of four single nucleotide polymorphisms (SNPs) of the HIF1α gene and its interaction with Helicobacter pylori (H. pylori) infection on susceptibility to gastric cancer (GC).Logistic regression was used to test the relationship between four SNPs of HIF1α gene and the susceptibility of GC. A generalized multifactor dimensionality reduction (GMDR) model was used to assess the HIF1α gene-H. pylori infection interaction.Logistic regression analysis indicated that both the rs11549465-CT genotype and the T allele were associated with an increased risk of GC, adjusted OR (95% CI) were 1.63 (1.09-2.20) (CT vs. CC) and 1.70 (1.13-2.36) (T vs. C), respectively. We also found that both the rs11549467-A allele and rs11549467-GA genotype were associated with an increased risk of GC, and adjusted OR (95% CI) were 2.21 (1.61-2.86) (GA vs. GG), 2.13 (1.65-2.65) (A vs. G), respectively. However, no statistically significant impact of rs2057482 or rs1957757 on risk of GC was found. The GMDR model indicated a statistically significant two-dimensional model combination (including rs11549467 and H. pylori infection). The selected model had testing balanced accuracy of 0.60 and the best cross-validation consistencies of 10/10 (p = 0.0107). Compared with H. pylori infection negative participants with rs11549467-GG genotype, H. pylori positive participants with the rs11549467-GA genotype had the highest GC risk, the OR (95% CI) was 3.04 (1.98-4.12).The rs11549467-A allele and rs11549467-GA genotype was associated with increased GC risk. Additionally, the gene-environment interaction between HIF-1α-rs11549467 and H. pylori infection was also correlated with an increased risk of GC.

20.
Biomed Chromatogr ; : e5922, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38867488

RESUMO

This study aims to explore the pharmacological substance basis of Qi Ge Decoction (QG) in antihyperlipidemia through a combination of metabolomics and serum pharmacochemistry. We used ultra-performance liquid chromatography quadrupole-time-of-flight/MS (UPLC Q-TOF/MS) to analyze and identify the chemical constituents of QG in vitro and in blood chemical components. The metabolomics technology was used to analyze serum biomarkers of QG in preventing and treating hyperlipidemia. We constructed a mathematical model of the relationship between constituents absorbed into the blood and endogenous biomarkers and explored the potential therapeutic application of QG for the prevention and treatment of hyperlipidemia. Compared with the model group, the levels of total cholesterol and triglyceride in the QG group were significantly decreased (P < 0.01). A total of 12 chemical components absorbed into the blood were identified, and 48 biomarkers of the hyperlipidemia model were obtained from serum metabolomic analysis, of which 15 metabolites were backregulated after QG intervention. Puerarin, hesperetin, puerarin xyloside, calycosin, and monohydroxy-tetramethoxyflavone had a high correlation with the biomarkers regulated by QG. This study elucidated the material basis of QG in the intervention of hyperlipidemia, thereby facilitating future research aimed at further revealing the pharmacodynamic material basis of QG's antihyperlipidemic effects.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA