Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Am Chem Soc ; 141(19): 7670-7674, 2019 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-31058498

RESUMO

Chemical vapor deposition (CVD) enables the large-scale growth of high-quality graphene film and exhibits considerable potential for the industrial production of graphene. However, CVD-grown graphene film contains surface contamination, which in turn hinders its potential applications, for example, in electrical and optoelectronic devices and in graphene-membrane-based applications. To solve this issue, we demonstrated a modified gas-phase reaction to achieve the large-scale growth of contamination-free graphene film, i.e., superclean graphene, using a metal-containing molecule, copper(II) acetate, Cu(OAc)2, as the carbon source. During high-temperature CVD, the Cu-containing carbon source significantly increased the Cu content in the gas phase, which in turn suppressed the formation of contamination on the graphene surface by ensuring sufficient decomposition of the carbon feedstock. The as-received graphene with a surface cleanness of about 99% showed enhanced optical and electrical properties. This study opens a new avenue for improving graphene quality with respect to surface cleanness and provides new insight into the mechanism of graphene growth through the gas-phase reaction pathway.

2.
Biochem Biophys Res Commun ; 515(4): 651-657, 2019 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-31178138

RESUMO

Cerebral ischemia is a leading cause of death and long-term disability in the world. Tripartite motif-47 (Trim47), a member of the TRIM family proteins, has been reported to be involved in apoptosis and inflammation in various types of diseases. Nevertheless, the underlying molecular mechanism of Trim47 in cerebral ischemia/reperfusion (I/R) injury remains unclear. This study aimed to explore the role of Trim47 in cerebral I/R injury and the potential underlying mechanisms. The results indicated that Trim47 expression was markedly induced in rats after stroke onset. By the use of genetic approaches, we indicated that Trim47 knockdown significantly reduced the infarct size, mitigated the neurological deficits scores and decreased brain water contents in rats with cerebral I/R injury induced by middle cerebral artery occlusion (MCAO). In addition, Trim47 knockdown-alleviated cerebral I/R was correlated with the suppression of apoptosis through inhibiting Caspase-3 cleavage. Furthermore, reducing Trim47 apparently decreased the release of pro-inflammatory factors, including interleukin 6 (IL-6), tumor necrosis factor-α (TNF-α) and inducible nitric oxide synthase (iNOS), in brain samples of MCAO rats, which was partly by the blockage of nuclear factor-kappa B (NF-κB) signaling. However, Trim47 over-expression markedly accelerated cerebral ischemia injury through promoting apoptosis and inflammation. The suppressive effects of Trim47 knockdown on cerebral I/R were verified in human neuron-like cells stimulated by oxygen and glucose deprivation (OGD). Thus, this study demonstrated a new mechanism for the effect of Trim47 on cerebral I/R injury, and targeting Trim47 might provide feasible therapies for stroke treatment.


Assuntos
Apoptose , Isquemia Encefálica/patologia , Proteínas de Transporte/metabolismo , Inflamação/metabolismo , Traumatismo por Reperfusão/patologia , Acidente Vascular Cerebral/patologia , Proteínas com Motivo Tripartido/fisiologia , Ubiquitina-Proteína Ligases/fisiologia , Animais , Caspase 3/metabolismo , Linhagem Celular Tumoral , Humanos , Infarto da Artéria Cerebral Média , Interleucina-6/metabolismo , Masculino , Ratos , Ratos Sprague-Dawley , Transdução de Sinais , Proteínas com Motivo Tripartido/genética , Ubiquitina-Proteína Ligases/genética
3.
Angew Chem Int Ed Engl ; 58(41): 14446-14451, 2019 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-31286615

RESUMO

Contamination commonly observed on the graphene surface is detrimental to its excellent properties and strongly hinders its application. It is still a great challenge to produce large-area clean graphene film in a low-cost manner. Herein, we demonstrate a facile and scalable chemical vapor deposition approach to synthesize meter-sized samples of superclean graphene with an average cleanness of 99 %, relying on the weak oxidizing ability of CO2 to etch away the intrinsic contamination, i.e., amorphous carbon. Remarkably, the elimination of amorphous carbon enables a significant reduction of polymer residues in the transfer of graphene films and the fabrication of graphene-based devices and promises strongly enhanced electrical and optical properties of graphene. The facile synthesis of large-area superclean graphene would open the pathway for both fundamental research and industrial applications of graphene, where a clean surface is highly needed.

4.
Nat Commun ; 10(1): 1912, 2019 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-31015405

RESUMO

Impurities produced during the synthesis process of a material pose detrimental impacts upon the intrinsic properties and device performances of the as-obtained product. This effect is especially pronounced in graphene, where surface contamination has long been a critical, unresolved issue, given graphene's two-dimensionality. Here we report the origins of surface contamination of graphene, which is primarily rooted in chemical vapour deposition production at elevated temperatures, rather than during transfer and storage. In turn, we demonstrate a design of Cu substrate architecture towards the scalable production of super-clean graphene (>99% clean regions). The readily available, super-clean graphene sheets contribute to an enhancement in the optical transparency and thermal conductivity, an exceptionally lower-level of electrical contact resistance and intrinsically hydrophilic nature. This work not only opens up frontiers for graphene growth but also provides exciting opportunities for the utilization of as-obtained super-clean graphene films for advanced applications.

5.
Sci Bull (Beijing) ; 64(10): 659-668, 2019 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-36659648

RESUMO

The scalable growth of wafer-sized single-crystal graphene in an energy-efficient manner and compatible with wafer process is critical for the killer applications of graphene in high-performance electronics and optoelectronics. Here, ultrafast epitaxial growth of single-crystal graphene wafers is realized on single-crystal Cu90Ni10(1 1 1) thin films fabricated by a tailored two-step magnetron sputtering and recrystallization process. The minor nickel (Ni) content greatly enhances the catalytic activity of Cu, rendering the growth of a 4 in. single-crystal monolayer graphene wafer in 10 min on Cu90Ni10(1 1 1), 50 folds faster than graphene growth on Cu(1 1 1). Through the carbon isotope labeling experiments, graphene growth on Cu90Ni10(1 1 1) is proved to be exclusively surface-reaction dominated, which is ascribed to the Cu surface enrichment in the CuNi alloy, as indicated by element in-depth profile. One of the best benefits of our protocol is the compatibility with wafer process and excellent scalability. A pilot-scale chemical vapor deposition (CVD) system is designed and built for the mass production of single-crystal graphene wafers, with productivity of 25 pieces in one process cycle. Furthermore, we demonstrate the application of single-crystal graphene in electrically controlled liquid-crystal microlens arrays (LCMLA), which exhibit highly tunable focal lengths near 2 mm under small driving voltages. By integration of the graphene based LCMLA and a CMOS sensor, a prototype camera is proposed that is available for simultaneous light-field and light intensity imaging. The single-crystal graphene wafers could hold great promising for high-performance electronics and optoelectronics that are compatible with wafer process.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA