Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nano Lett ; 24(9): 2931-2938, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38377049

RESUMO

Plasmon-induced hot-electron transfer at the metallic nanoparticle/semiconductor interface is the basis of plasmon-enhanced photocatalysis and energy harvesting. However, limited by the nanoscale size of hot spots and femtosecond time scale of hot-electron transfer, direct observation is still challenging. Herein, by using spatiotemporal-resolved photoemission electron microscopy with a two-color pump-probe beamline, we directly observed such a process with a concise system, the Au nanoparticle/monolayer transition-metal dichalcogenide (TMD) interface. The ultrafast hot-electron transfer from Au nanoparticles to monolayer TMDs and the plasmon-enhanced transfer process were directly measured and verified through an in situ comparison with the Au film/TMD interface and free TMDs. The lifetime at the Au nanoparticle/MoSe2 interface decreased from 410 to 42 fs, while the photoemission intensities exhibited a 27-fold increase compared to free MoSe2. We also measured the evolution of hot electrons in the energy distributions, indicating the hot-electron injection and decay happened in an ultrafast time scale of ∼50 fs without observable electron cooling.

2.
Nano Lett ; 22(21): 8728-8734, 2022 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-36314894

RESUMO

The artificial engineering of photoresponse is crucial for optoelectronic applications, especially for photodetectors. Here, we designed and fabricated a metasurface on a semimetallic Cd3As2 nanoplate to improve its thermoelectric photoresponse. The metasurface can enhance light absorption, resulting in a temperature gradient. This temperature gradient can contribute to thermoelectric photoresponse through the photothermoelectric effect. Furthermore, power-dependent measurements showed a linearly dependent photoresponse of the Cd3As2 metasurface device, indicating a second-order photocurrent response. Wavelength-dependent measurements showed that the metasurface can efficiently separate photoexcited carriers in the broadband range of 488 nm to 4 µm. The photoresponse near the metasurface boundaries exhibits a responsivity of ∼1 mA/W, which is higher than that near the electrode junctions. Moreover, the designed metasurface device provided an anisotropic polarization-dependent photoresponse rather than the isotropic photoresponse of the original Cd3As2 device. This study demonstrates that metasurfaces have excellent potential for artificial controllable photothermoelectric photoresponse of various semimetallic materials.

3.
Nano Lett ; 20(5): 3747-3753, 2020 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-32242668

RESUMO

A comprehensive understanding of the ultrafast electron dynamics in two-dimensional transition metal dichalcogenides (TMDs) is necessary for their applications in optoelectronic devices. In this work, we contribute a study of ultrafast electron cooling and decay dynamics in the supported and suspended monolayer WS2 by time- and energy-resolved photoemission electron microscopy (PEEM). Electron cooling in the Q valley of the conduction band is clearly resolved in energy and time, on a time scale of 0.3 ps. Electron decay is mainly via a defect trapping process on a time scale of several picoseconds. We observed that the trap states can be produced and increased by laser illumination under an ultrahigh vacuum, and the higher local optical-field intensity led to the faster increase of trap states. The enhanced defect trapping could significantly modify the carrier dynamics and should be paid attention to in photoemission experiments for two-dimensional materials.

4.
Expert Opin Ther Pat ; 34(9): 759-772, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38979973

RESUMO

INTRODUCTION: Phosphodiesterase 9 (PDE9) has been demonstrated as a potential target for neurological disorders and cardiovascular diseases, such as Alzheimer's disease and heart failure. For the last few years, a series of PDE9 inhibitors with structural diversities have been developed and patented by researchers and pharmaceutical companies, providing insights into first-in-class therapies of PDE9 drug candidates. AREA COVERED: This review provides an overview of PDE9 inhibitors in patents from 2018 to the present. EXPERT OPINION: Only a few of the current PDE9 inhibitors are highly selective over other PDEs, which limits their application in pharmacological and clinical research. The design and development of highly selective PDE9 inhibitors remain the top priority in future research. The advantages of targeting PDE9 rather than other PDEs in treating neurodegenerative diseases need to be explained thoroughly. Besides, application of PDE9 inhibitor-based combination therapies sheds light on treating diabetes and refractory heart diseases. Finally, PDE9 inhibitors should be further explored in clinical indications beyond neurological disorders and cardiovascular diseases.


Assuntos
Doenças Cardiovasculares , Desenvolvimento de Medicamentos , Patentes como Assunto , Inibidores de Fosfodiesterase , Humanos , Animais , Inibidores de Fosfodiesterase/farmacologia , Doenças Cardiovasculares/tratamento farmacológico , Desenho de Fármacos , Doenças do Sistema Nervoso/tratamento farmacológico , 3',5'-AMP Cíclico Fosfodiesterases/antagonistas & inibidores , 3',5'-AMP Cíclico Fosfodiesterases/metabolismo , Doenças Neurodegenerativas/tratamento farmacológico , Doenças Neurodegenerativas/fisiopatologia
5.
Nat Commun ; 14(1): 4837, 2023 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-37563183

RESUMO

Low-loss dielectric modes are important features and functional bases of fundamental optical components in on-chip optical devices. However, dielectric near-field modes are challenging to reveal with high spatiotemporal resolution and fast direct imaging. Herein, we present a method to address this issue by applying time-resolved photoemission electron microscopy to a low-dimensional wide-bandgap semiconductor, hexagonal boron nitride (hBN). Taking a low-loss dielectric planar waveguide as a fundamental structure, static vector near-field vortices with different topological charges and the spatiotemporal evolution of waveguide modes are directly revealed. With the lowest-order vortex structure, strong nanofocusing in real space is realized, while near-vertical photoemission in momentum space and narrow spread in energy space are simultaneously observed due to the atomically flat surface of hBN and the small photoemission horizon set by the limited photon energies. Our approach provides a strategy for the realization of flat photoemission emitters.

6.
Nanoscale ; 13(4): 2626-2631, 2021 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-33496300

RESUMO

The ultrafast spatiotemporal imaging of photoexcited electrons is essential to understanding interfacial electron dynamic processes. We used time- and energy-resolved photoemission electron microscopy (PEEM) to investigate the photoexcited electron dynamics at multiplex in-plane silicon pn junctions. We found that the measured kinetic energy of photoelectrons from n-type regions is higher than that from p-type regions owing to different work functions. Interestingly, the kinetic energy of outer n-type regions is higher than that of inner n-type regions, which is caused by the reverse bias induced by photoemission. Time-resolved PEEM results reveal different evolution rates of hot electrons in different doping regions. The rise time of the n-type (outer n-type) regions is faster than that of the p-type (inner n-type) regions. So, closed doping patterns can influence the electron spectra and dynamics at the micro-nano scale. These results help us to understand the ultrafast dynamics of carriers at in-plane interfaces and optimize optoelectronic integrated devices with complex heterojunctions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA