Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Soft Matter ; 19(33): 6341-6354, 2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37575029

RESUMO

Osteoarthritis (OA), the most common degenerative joint disorder, seriously affects patients' daily activities. Recently, hydrogels, due to their similar structure to articular cartilage, have shown great potential as cartilage-repairing materials. In the present work, we developed a simple process for fabricating terpolymer [P(acrylamide-co-acrylic acid-co-2-acrylamido-2-methyl-1-propanesulfonic acid)/Fe3+] hydrogel [P(AAm-co-AAc-co-AMPS)/Fe3+]. The content of AMPS was found to show a crucial effect on the mechanical and tribological performance of the terpolymer hydrogel. When the content of AMPS was 0.45 mol L-1, the compressive strength, modulus, and friction coefficient of the terpolymer hydrogel were 66.60 ± 1.79 MPa, 2.10 ± 0.16 MPa, and 0.032, respectively. In addition, the hydrogel showed high wear durability and the friction coefficient was as low as 0.038 after 3.6 × 105 sliding cycles.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA