Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-35497911

RESUMO

Plants have a pivotal role in ethnopharmacology, and their preparations are in use globally. However, getting down to the structure requires an effective workflow and mostly requires a time-consuming isolation process. Although bioassay-guided approaches are widely popular, they face a massive problem of rediscovery in recent times, especially in plant metabolomics. Mass spectrometry (MS)-based approach incorporated molecular networking via Global Natural Product Social Molecular Networking (GNPS) is considered here for the benefit of the fast screening of secondary metabolites. This study uses direct crude extracts obtained from various parts of the Urtica dioica plant for the characterization of secondary metabolites. The crude extract of the plant initially displayed promising antioxidant and anti-diabetic activities. Then, we employed mass spectrometry-based dereplication to identify the phytochemical components in the extracts. This led to the discovery of 7 unknown and 17 known secondary metabolites, which were further verified with the SIRIUS 4 platform, a computational tool for the annotation of compounds using tandem MS data. On the other hand, chasing the antioxidant activity of methanolic extract of U. dioica leaves, we employed a bioassay-guided isolation approach. With this method, we isolated and characterized compound 13, a known molecule, which possessed strong antioxidant activity without showing much toxicity in the brine shrimp lethality test at the test concentration of 1 mg/mL. With our results, we advocate the MS-based approach as a good starting point for the dereplication of compounds from the complex crude extracts of plants.

2.
Antioxidants (Basel) ; 11(11)2022 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-36358576

RESUMO

Several drugs now employed in cancer therapy were discovered as a result of anticancer drug research based on natural products. Here, we reported the in vitro antioxidant and anticancer activity followed by in silico anticancer and estrogen-like activity of Psidium guajava L. essential oil against ER-α receptors which lead to potential inhibitory action against breast cancer pathways. METHODS: The bioactive compounds in guava essential oil were screened using gas chromatography-mass spectrometry (GC-MS). Similarly, the antioxidant properties of the extracted oil were evaluated using 2,2-Diphenyl-1-picrylhydrazyl scavenging assay. Furthermore, the in vitro anticancer activity of guava oil was observed through the MTT assay and an in silico molecular docking experiment was also carried out to ensure that they fit into the estrogen receptors (ERs) and possess anticancer potential. RESULTS: The GC-MS profile of the essential oil revealed the presence of 17 chemicals, with limonene (51.3%), eucalyptol (21.3%), caryophyllene oxide (6.2%), caryophyllene (5.6%), and nerolidol (4.5%) occupying more than one-third of the chromatographic spectrum zone. Guava leaves' essential oil (EO) inhibited DPPH (2,2-diphenyl-1-picrylhydrazyl) radicals and exhibited concentration dependent free radical scavenging activity, acting as a potent antioxidant with an IC50 value of 29.3 ± 0.67 µg/mL. The outcome of the MTT assay showed that the extracted guava oil had nearly the same efficacy against breast and liver cancer cells at a low concentration (1 µg/mL), giving 98.3 ± 0.3% and 98.5 ± 0.4% cell viability against HepG2 at 1 µg/mL, respectively. When the concentration of essential oil was increased, it showed a small reduction in the percentage of viable cells. While conducting an in silico study of all the screened compounds, the potential for hydroxycaryophyllene, caryophyllene, caryophyllene oxide, humulene, terpineol, and calamenene to inhibit tumor growth was bolstered due to a resemblance to 4-hydroxytamoxifen, thereby implying that these compounds may act as selective estrogen receptor modulators (SERMs). The ADME analysis of the compounds indicated above revealed that they exhibit excellent drug likeness properties and follow the Lipinski rule of five. CONCLUSIONS: Consequently, they have a substantial anticancer therapeutic potential and can be used for novel drug discovery in the effort to minimize the global burden of breast cancer.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA