Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
BMC Microbiol ; 22(1): 248, 2022 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-36229768

RESUMO

BACKGROUND: Carbapenemase-producing Gram-negative (CPGN) bacteria impose life-threatening infections with limited treatment options. Rigor and rapid detection of CPGN-associated infections is usually associated with proper treatment and better disease prognosis. Accordingly, this study aimed at evaluating the phenotypic methods versus genotypic methods used for the detection of such pathogens and determining their sensitivity/specificity values. METHODS: A total of 71 CPGN bacilli (30 Enterobacterales and 41 non-glucose-fermenting bacilli) were tested for the carbapenemase production by the major phenotypic approaches including, the modified Hodge test (MHT), modified carbapenem inactivation method (mCIM), combined disk test by EDTA (CDT) and blue-carba test (BCT). The obtained results were statistically analyzed and correlated to the obtained resistant genotypes that were determined by using polymerase chain reactions (PCR) for the detection of the major carbapenemase-encoding genes covering the three classes (Class A, B, and D) of carbapenemases. RESULTS: In comparison to PCR, the overall sensitivity/specificity values for detection of carbapenemase-producing organism were 65.62%/100% for MHT, 68.65%/100% for mCIM, 55.22%/100% for CDT and 89.55%/75% for BCT. The sensitivity/specificity values for carbapenemase-producing Enterobacterales were, 74%100% for MHT, 51.72%/ 100% for mCIM, 62.07%/100% for CDT and 82.75%/100% for BCT. The sensitivity/specificity values for carbapenemase-producing non-glucose fermenting bacilli were, 62.16%/100% for MHT, 81.57%/100% for mCIM, 50/100% for CDT and 94.74%/66.66% for BCT. Considering these findings, BCT possess a relatively high performance for the efficient and rapid detection of carbapenemase producing isolates. Statistical analysis showed significant association (p < 0.05) between blaNDM and/or blaVIM genotypes with MHT/CDT; blaKPC/blaGIM genotypes with CDT and blaGIM genotype with BCT. CONCLUSION: The current study provides an update on the performance of the phenotypic tests which are varied depending on the tested bacterial genera and the type of the carbapenemase. The overall sensitivity/specificity values for detection of CPO were 65.62%/100% for MHT, 68.65%/100% for mCIM, 55.22%/100% for CDT and 89.55%/75% for BCT. Based on its respective diagnostic efficiency and rapid turnaround time, BCT is more likely to be recommended in a resource-limited settings particularly, when molecular tests are not available.


Assuntos
Antibacterianos , Carbapenêmicos , Proteínas de Bactérias/análise , Proteínas de Bactérias/genética , Ácido Edético , Genótipo , Bactérias Gram-Negativas/genética , Testes de Sensibilidade Microbiana , beta-Lactamases/análise , beta-Lactamases/genética
2.
Chem Biodivers ; 19(9): e202200272, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35938449

RESUMO

This study aimed to investigate the chemical composition of essential oils isolated from Acca sellowiana (feijoa) leaves and stems and elaborate on their relevance as natural anti-aging, coupled with molecular-docking studies. The isolated oils were analysed using gas chromatography-mass spectrometry analysis and investigated for inhibitory effects against acetylcholinesterase, ß-secretase, collagenase, elastase and tyrosinase. Molecular-modelling study was performed using MOE-Dock program to evaluate binding interactions of major components with the above-mentioned targets. The leaf oil revealed the predominance of caryophyllene oxide (24.3 %), linalool (7.9 %), and spathulenol (6.6 %), while the stem oil was presented by caryophyllene oxide (38.1 %), α-zingiberene (10.1 %) and humulene oxide II (6.0 %). The stem oil expressed superior inhibitory activities against acetylcholinesterase (IC50 =0.15±0.01 µg/mL), ß-secretase (IC50 =3.99±0.23 µg/mL), collagenase (IC50 =408.10±20.80 µg/mL), elastase (IC50 =0.17±0.01 µg/mL) and tyrosinase (IC50 =8.45±0.40 µg/mL). The valuable binding interactions and docking scores were observed for caryophyllene oxide and α-zingiberene with acetylcholinesterase. Besides, α-zingibirene followed by linalool and τ-cadinol revealed tight fitting with collagenase and elastase. Additionally, linalool, spathulenol and τ-cadinol showed the best binding energy to tyrosinase. This study provides valuable scientific data on A. sellowiana as potential candidates for the development of natural antiaging formulations. The current study provided scientific evidence for the potential use of feijoa essential oils in antiaging formulations and as an adjuvant for the prophylaxis against Alzheimer disease.


Assuntos
Feijoa , Óleos Voláteis , Acetilcolinesterase , Monoterpenos Acíclicos , Secretases da Proteína Precursora do Amiloide , Feijoa/química , Simulação de Acoplamento Molecular , Sesquiterpenos Monocíclicos , Monofenol Mono-Oxigenase/análise , Óleos Voláteis/química , Óxidos , Elastase Pancreática/análise , Folhas de Planta/química , Sesquiterpenos Policíclicos , Sesquiterpenos , Terpenos
3.
Molecules ; 27(9)2022 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-35566017

RESUMO

In the present work, 0.25 wt%GNP-Ti composites were prepared through powder metallurgy route by adopting three types of mixing modes to investigate the extent of mixing on the mechanical and tribological properties. Dry ball milling, wet ball milling, and rotator mixing were independently employed to homogenize the composite constituents. Three types of composite powders obtained were subsequently sintered into composite pellets by cold compaction followed by vacuum sintering. Morphological investigation of composite powders performed by SEM revealed better homogenization of GNPs in Ti matrix for dry ball milled composite powder, whereas wet ball milled and rotator mixed composite powders showed aggregation and bundling of GNPs. Micro Vickers hardness of composites produced via dry ball milling is 4.56% and 15.7% higher than wet ball milled and rotator mixed samples, respectively. Wear test performed by pin-on-disk tribometer showed higher wear loss for wet ball milled and rotator mixed composites in comparison to dry ball milled.

4.
Molecules ; 26(13)2021 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-34209170

RESUMO

BACKGROUND: This study aimed to produce, purify, structurally elucidate, and explore the biological activities of metabolites produced by Streptomyces (S.) griseus isolate KJ623766, a recovered soil bacterium previously screened in our lab that showed promising cytotoxic activities against various cancer cell lines. METHODS: Production of cytotoxic metabolites from S. griseus isolate KJ623766 was carried out in a 14L laboratory fermenter under specified optimum conditions. Using a 3-(4,5-dimethylthazol-2-yl)-2,5-diphenyl tetrazolium-bromide assay, the cytotoxic activity of the ethyl acetate extract against Caco2 and Hela cancer cell lines was determined. Bioassay-guided fractionation of the ethyl acetate extract using different chromatographic techniques was used for cytotoxic metabolite purification. Chemical structures of the purified metabolites were identified using mass, 1D, and 2D NMR spectroscopic analysis. RESULTS: Bioassay-guided fractionation of the ethyl acetate extract led to the purification of two cytotoxic metabolites, R1 and R2, of reproducible amounts of 5 and 1.5 mg/L, respectively. The structures of R1 and R2 metabolites were identified as ß- and γ-rhodomycinone with CD50 of 6.3, 9.45, 64.8 and 9.11, 9.35, 67.3 µg/mL against Caco2, Hela and Vero cell lines, respectively. Values were comparable to those of the positive control doxorubicin. CONCLUSIONS: This is the first report about the production of ß- and γ-rhodomycinone, two important scaffolds for synthesis of anticancer drugs, from S. griseus.


Assuntos
Antibióticos Antineoplásicos , Streptomyces griseus , Animais , Antraciclinas/química , Antraciclinas/isolamento & purificação , Antraciclinas/metabolismo , Antraciclinas/farmacologia , Antibióticos Antineoplásicos/biossíntese , Antibióticos Antineoplásicos/química , Antibióticos Antineoplásicos/isolamento & purificação , Antibióticos Antineoplásicos/farmacologia , Produtos Biológicos/química , Produtos Biológicos/metabolismo , Produtos Biológicos/farmacologia , Células CACO-2 , Chlorocebus aethiops , Células HeLa , Humanos , Streptomyces griseus/química , Streptomyces griseus/metabolismo , Células Vero
5.
Medicina (Kaunas) ; 58(1)2021 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-35056328

RESUMO

Despite the advance in the management of Coronavirus disease 2019 (COVID-19), the global pandemic is still ongoing with a massive health crisis. COVID-19 manifestations may range from mild symptoms to severe life threatening ones. The hallmark of the disease severity is related to the overproduction of pro-inflammatory cytokines manifested as a cytokine storm. Based on its anti-inflammatory activity through interfering with several pro and anti-inflammatory pathways, colchicine had been proposed to reduce the cytokine storm and subsequently improve clinical outcomes. Molecular docking analysis of colchicine against RNA-dependent RNA polymerase (RdRp) and protease enzymes of Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) revealed that colchicine provided a grid-based molecular docking method, C-DOCKER interaction energy 64.26 and 47.53 (Kcal/mol) with protease and RdRp, respectively. This finding indicated higher binding stability for colchicine-protease complexes than the colchicine-RdRp complex with the involvement of seven hydrogen bonds, six hydrogen acceptors with Asn142, Gly143, Ser144, and Glu166 and one hydrogen-bond donors with Cys145 of the protease enzyme. This is in addition to three hydrophobic interactions with His172, Glu166, and Arg188. A good alignment with the reference compound, Boceprevir, indicated high probability of binding to the protease enzyme of SARS-CoV-2. In conclusion, colchicine can ameliorate the destructive effect of the COVID-19 cytokine storm with a strong evidence of antiviral activity by inhibiting the protease enzyme of SARS-CoV-2.


Assuntos
Tratamento Farmacológico da COVID-19 , Colchicina/uso terapêutico , Proteases 3C de Coronavírus/antagonistas & inibidores , Síndrome da Liberação de Citocina/tratamento farmacológico , Síndrome da Liberação de Citocina/virologia , Humanos , Simulação de Acoplamento Molecular , SARS-CoV-2/efeitos dos fármacos
6.
Environ Sci Pollut Res Int ; 30(21): 61106-61122, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37052839

RESUMO

The present study, La0.7Sr0.3MO3 (M = Mn-, Co-, and Fe-), perovskite, has successfully been synthesized via co-precipitation and sol-gel auto-combustion. XRD, SEM, and EDX characterized the prepared samples. XRD and SEM showed that the as-prepared La0.7Sr0.3MnO3 and La0.7Sr0.3CoO3 have multiphase. La0.7Sr0.3FeO3, in comparison, is nanosized, has a single-phase perovskite, and has a rather homogenous particle size distribution. Additionally, EDX mapping analysis shows that all pieces are distributed uniformly. According to X-ray diffractometer results, all calcined powders contain 100% LSF, more than 15% perovskite phase of LSC, 47% LSM, and other secondary phases, such as cobalt oxide. Aِt room temperature and magnetic field of ± 20 kG, La0.7Sr0.3MnO3 exhibited weak ferromagnetic behavior in a low magnetic field, whereas diamagnetic behavior was seen in a high magnetic field. La0.7Sr0.3FeO3 samples behave as strong ferromagnetic. On the contrary, the photodegradation of La0.7Sr0.3MnO3 is 99% compared to 75% and 91% for other samples under UVC lights of wavelength = 254 nm. The degradation rate for La0.7Sr0.3MnO3 is 0.179 higher, about 3.25 and 2.23, than the other samples. A La0.7Sr0.3MnO3 nanocomposite performs as a photocatalyst to enhance the efficiency of methylene blue photodegradation. This study boosts good UVC photocatalysts with high efficiency for different kinds of dyes. Hence, the catalyst possessed high stability and efficiency for continuous wastewater treatment.


Assuntos
Nanopartículas , Nanoestruturas , Nanoestruturas/química , Nanopartículas/química , Magnetismo , Campos Magnéticos
7.
Materials (Basel) ; 16(3)2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-36770186

RESUMO

In this paper, we discuss the preparation of Li-doped ZnO nanostructures through combustion and report on their structural, morphological, optical, and electrocatalysis properties. X-ray diffraction analyses show that the samples have a structure crystallized into the usual hexagonal wurtzite ZnO structure according to the P63mc space group. The scanning electron microscope images conceal all samples' nanosphere bundles and aggregates. The reflectance spectra analysis showed that the direct bandgap values varied from 3.273 eV (for pure ZnO, i.e., ZnL1) to 3.256 eV (for high Li-doped ZnO). The measured capacitance concerning frequency has estimated the variation of dielectric constant, dielectric loss, and AC conductivity against AC electric field frequency. The dielectric constant variations and AC conductivity are analyzed and discussed by well-known models such as Koop's phenomenological theory and Jonscher's law. The Raman spectra have been recorded and examined for the prepared samples. Rhodamine B was electro-catalytically degraded in all prepared samples, with the fastest time for ZnL5 being 3 min.

8.
Spectrochim Acta A Mol Biomol Spectrosc ; 286: 121949, 2023 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-36228488

RESUMO

The target is a novel nano-combination membrane (NCM) via Terbium oxide nanoparticles (Tb2O3 NPs) and nickel oxide (NiO NPs) which integrates on the graphene oxide (GO) surface. The NCM is characterized by different tools such as X-ray diffraction (XRD), UV-visible spectrophotometer (UV-vis), and Scanning electron microscopy (SEM)for removing organic pollutants. The precipitation method has been applied for fabricating the selected metal oxides (MOs), where the terbium chloride and nickel chloride are used as precursors for fabricating the metal oxides (MOs) NPs that formed with potassium hydroxide in the solution. The photocatalytic activity of fabricated NCM has been noticed with the quenching of mixed Rhodamine B (RhB) and methyl orange (MO) dyes at various times for water treatment. UV-vis spectra confirmed the excellent efficiency against organic pollution degradation. After exposure to the light for 100 min, the photodegradation efficacy of MB and RhB appeared at 46.88 % and 16.4 %, with GO@Tb2O3, by GO@Tb2O3.NiO the efficiency was 54.8 % and 32.3 % after 100 min, while GO@NiO has degradation efficiency at 43 % and 17.3 % for MB and RhB respectively. The cytotoxicity of NCM is detected with hepatocellular carcinoma (HepG2) and breast adenocarcinoma (MCF-7), the result illustrated that the fabricated NCM does not affect the cancer cells with the 10 µL, but with the higher concentration of 100 µL, the cell lysis was observed. The results of photocatalytic and cytotoxicity are recommended using these fabricated NCM in water treatment.


Assuntos
Óxidos , Purificação da Água , Térbio , Catálise
9.
Sci Rep ; 13(1): 9696, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37322021

RESUMO

Polytetrafluoroethylene (PTFE) is one of the most significant fluoropolymers, and one of the most recent initiatives is to increase its performance by using metal oxides (MOs). Consequently, the surface modifications of PTFE with two metal oxides (MOs), SiO2 and ZnO, individually and as a mixture of the two MOs, were modeled using density functional theory (DFT). The B3LYPL/LANL2DZ model was used in the studies conducted to follow up the changes in electronic properties. The total dipole moment (TDM) and HOMO/LUMO band gap energy (∆E) of PTFE, which were 0.000 Debye and 8.517 eV respectively, were enhanced to 13.008 Debye and 0.690 eV in the case of PTFE/4ZnO/4SiO2. Moreover, with increasing nano filler (PTFE/8ZnO/8SiO2), TDM changed to 10.605 Debye and ∆E decreased to 0.273 eV leading to further improvement in the electronic properties. The molecular electrostatic potential (MESP) and quantitative structure activity relationship (QSAR) studies revealed that surface modification of PTFE with ZnO and SiO2 increased its electrical and thermal stability. The improved PTFE/ZnO/SiO2 composite can, therefore, be used as a self-cleaning layer for astronaut suits based on the findings of relatively high mobility, minimal reactivity to the surrounding environment, and thermal stability.


Assuntos
Nanocompostos , Óxido de Zinco , Óxido de Zinco/química , Dióxido de Silício/química , Relação Quantitativa Estrutura-Atividade , Politetrafluoretileno/química
10.
Polymers (Basel) ; 15(6)2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36987132

RESUMO

In this present work, a PVA/PVP-blend polymer was doped with various concentrations of neodymium oxide (PB-Nd+3) composite films using the solution casting technique. X-ray diffraction (XRD) analysis was used to investigate the composite structure and proved the semi-crystallinity of the pure PVA/PVP polymeric sample. Furthermore, Fourier transform infrared (FT-IR) analysis, a chemical-structure tool, illustrated a significant interaction of PB-Nd+3 elements in the polymeric blends. The transmittance data reached 88% for the host PVA/PVP blend matrix, while the absorption increased with the high dopant quantities of PB-Nd+3. The absorption spectrum fitting (ASF) and Tauc's models optically estimated the direct and indirect energy bandgaps, where the addition of PB-Nd+3 concentrations resulted in a drop in the energy bandgap values. A remarkably higher quantity of Urbach energy for the investigated composite films was observed with the increase in the PB-Nd+3 contents. Moreover, seven theoretical equations were utilized, in this current research, to indicate the correlation between the refractive index and the energy bandgap. The indirect bandgaps for the proposed composites were evaluated to be in the range of 5.6 eV to 4.82 eV; in addition, the direct energy gaps decreased from 6.09 eV to 5.83 eV as the dopant ratios increased. The nonlinear optical parameters were influenced by adding PB-Nd+3, which tended to increase the values. The PB-Nd+3 composite films enhanced the optical limiting effects and offered a cut-off laser in the visible region. The real and imaginary parts of the dielectric permittivity of the blend polymer embedded in PB-Nd+3 increased in the low-frequency region. The AC conductivity and nonlinear I-V characteristics were augmented with the doping level of PB-Nd+3 contents in the blended PVA/PVP polymer. The outstanding findings regarding the structural, electrical, optical, and dielectric performance of the proposed materials show that the new PB-Nd+3-doped PVA/PVP composite polymeric films are applicable in optoelectronics, cut-off lasers, and electrical devices.

11.
Antibiotics (Basel) ; 11(3)2022 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-35326762

RESUMO

Staphylococcus aureus is a fatal Gram-positive pathogen threatening numerous cases of hospital-admitted patients worldwide. The emerging resistance of the pathogen to several antimicrobial agents has pressurized research to propose new strategies for combating antimicrobial resistance. Novel strategies include targeting the virulence factors of S. aureus. One of the most prominent virulence factors of S. aureus is its eponymous antioxidant pigment staphyloxanthin (STX), which is an auspicious target for anti-virulence therapy. This review provides an updated outline on STX and multiple strategies to attenuate this virulence factor. The approaches discussed in this article focus on bioprospective and chemically synthesized inhibitors of STX, inter-species communication and genetic manipulation. Various inhibitor molecules were found to exhibit appreciable inhibitory effect against STX and hence would be able to serve as potential anti-virulence agents for clinical use.

12.
Polymers (Basel) ; 14(6)2022 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-35335400

RESUMO

The surface of pure polytetrafluoroethylene (PTFE) microfibers was modified with ZnO and graphene (G), and the composite was studied using ATR-FTIR, XRD, and FESEM. FTIR results showed that two significant bands appeared at 1556 cm-1 and 515 cm-1 as indications for CuO and G interaction. The SEM results indicated that CuO and G were distributed uniformly on the surface of the PTFE microfibers, confirming the production of the PTFE/CuO/G composite. Density functional theory (DFT) calculations were performed on PTFE polymer nanocomposites containing various metal oxides (MOs) such as MgO, Al2O3, SiO2, TiO2, Fe3O4, NiO, CuO, ZnO, and ZrO2 at the B3LYP level using the LAN2DZ basis set. Total dipole moment (TDM) and HOMO/LUMO bandgap energy ΔE both show that the physical and electrical characteristics of PTFE with OCu change to 76.136 Debye and 0.400 eV, respectively. PTFE/OCu was investigated to observe its interaction with graphene quantum dots (GQDs). The results show that PTFE/OCu/GQD ZTRI surface conductivity improved significantly. As a result, the TDM of PTFE/OCu/GQD ZTRI and the HOMO/LUMO bandgap energy ΔE were 39.124 Debye and ΔE 0.206 eV, respectively. The new electrical characteristics of PTFE/OCu/GQD ZTRI indicate that this surface is appropriate for electronic applications.

13.
Materials (Basel) ; 15(9)2022 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-35591504

RESUMO

In this study, the X-ray and gamma attenuation characteristics and optical properties of a synthesized tellurite-phosphate-sodium oxide glass system with a composition of (85 - x)TeO2-10P2O5-xNa2O mol% (where x = 15, 20, and 25) were evaluated. The glass systems we re fabricated by our research group using quenching melt fabrication. The shielding parameters of as-synthesized systems, such as the mass attenuation coefficient (MAC), linear attenuation coefficient (LAC), effective atomic number (Zeff), half-value layer (HVL), tenth value layer (TVL), mean free path (MFP), and effective electron density (Neff) in a wide energy range between 15 keV and 15 MeV, were estimated using well-known PHY-X/PSD software and recently developed MIKE software. Herein, the optical parameters of prepared glasses, such as molar volume (VM), oxygen molar volume (VO), oxygen packing density (OPD), molar polarizability (αm), molar refractivity (Rm), reflection loss (RL), and metallization (M), were estimated using MIKE software. Furthermore, the shielding performance of the prepared glasses was compared with that of commonly used standard glass shielding materials. The results show that the incorporation of sodium oxide into the matrix TeO2/P2O5 with an optimum concentration can yield a glass system with good shielding performance as well as good optical and physical properties, especially at low photon energy.

14.
Materials (Basel) ; 15(9)2022 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-35591591

RESUMO

An efficient and environmentally friendly combustion technique was employed to produce ZnO nanopowders with different Eu concentrations (from 0.001 g to 5 g). The structural morphology of the Eu2O3-ZnO nanocomposites was examined using XRD, SEM, and infrared spectroscopy (FT-IR). In addition, UV-Vis diffuse reflectance spectroscopy was also used to investigate the effects of europium (Eu) dopant on the optical behaviors and energy bandgaps of nano-complex oxides. The photocatalytic degradation efficiency of phenol and methylene blue was investigated using all the prepared Eu2O3-ZnO nanostructured samples. Photocatalytic effectiveness increased when europium (Eu) doping ratios increased. After adding moderate Eu, more hydroxyl radicals were generated over ZnO. The best photocatalyst for phenol degradation was 1 percent Eu2O3-ZnO, while it was 0.5 percent Eu2O3-ZnO for methylene blue solutions. The obtained Eu2O3-doped ZnO nanostructured materials are considered innovative, promising candidates for a wide range of nano-applications, including biomedical and photocatalytic degradation of organic dyes and phenol.

15.
Nanomaterials (Basel) ; 12(7)2022 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-35407178

RESUMO

The growth of the textile industry results in a massive accumulation of dyes on water. This enormous rise in pigments is the primary source of water pollution, affecting the aquatic lives and our ecosystem balance. This study aims to notify the fabrication of neodymium incorporated copper oxide (Nd2O3 doped CuO) nanoparticles by combustion method for effective degradation of dye, methylene blue (MB). X-ray diffraction (XRD), Field emission Scanning electron microscopy (FESEM), Zeta potential have been applied for characterization. Photocatalyst validity has been evaluated for methylene blue degradation (MB). Test conditions such as time of contact, H2O2, pH, and photo-Fenton have been modified to identify optimal degradation conditions. Noticeably, 7.5% Nd2O3 doped CuO nanoparticle demonstrated the highest photocatalytic efficiency, up to 90.8% in 80 min, with a 0.0227 min-1 degradation rate. However, the photocatalytic efficiency at pH 10 becomes 99% with a rate constant of 0.082 min-1. Cyclic experiments showed the Nd2O3 doped CuO nanoparticle's stability over repeated use. Scavenge hydroxyl radical species responsible for degradation using 7.5% Nd2O3 doped CuO nanoparticles have been investigated under visible irradiation.

16.
Materials (Basel) ; 15(7)2022 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-35407814

RESUMO

The incorporation of tungsten trioxide (WO3) by various concentrations of graphitic carbon nitride (g-C3N4) was successfully studied. X-ray diffraction (XRD), Scanning Electron Microscope (SEM), and Diffused Reflectance UV-Vis techniques were applied to investigate morphological and microstructure analysis, diffused reflectance optical properties, and photocatalysis measurements of WO3/g-C3N4 photocatalyst composite organic compounds. The photocatalytic activity of incorporating WO3 into g-C3N4 composite organic compounds was evaluated by the photodegradation of both Methylene Blue (MB) dye and phenol under visible-light irradiation. Due to the high purity of the studied heterojunction composite series, no observed diffraction peaks appeared when incorporating WO3 into g-C3N4 composite organic compounds. The particle size of the prepared composite organic compound photocatalysts revealed no evident influence through the increase in WO3 atoms from the SEM characteristic. The direct and indirect bandgap were recorded for different mole ratios of WO3/g-C3N4, and indicated no apparent impact on bandgap energy with increasing WO3 content in the composite photocatalyst. The composite photocatalysts' properties better understand their photocatalytic activity degradations. The pseudo-first-order reaction constants (K) can be calculated by examining the kinetic photocatalytic activity.

17.
Infect Drug Resist ; 15: 3459-3475, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35813084

RESUMO

Background: Fungi are rich source of biologically active metabolites aimed for the improvement of human health through the prevention of various diseases, including infections and inflammatory disorders. Aim: We aimed to in vitro examine the anti-SARS CoV-2 activity of the aqueous extract of each Pleurotus (P.) ostreatus, Lentinula (L.) edodes and Agaricus (A.) bisporus edible mushroom followed by docking analysis of certain metabolites against the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-main protease (protease Mpro). Methods: Antiviral and cytotoxic effects were tested on hCoV-19/Egypt/NRC-3/2020/Vero-E6 cells and analyzed via (3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide Assay (MTT) assay. Ligand-protein and protein-protein docking studies were performed to explore the interaction of different mushroom extracts at the binding site of protease Mpro. Molecular dynamics (MD) simulations were performed on the most promising ligand-target complexes to investigate their dynamic properties and confirm docking results. Results: Substantial antiviral activities with an IC50 of 39.19, 26.17, and 10.3.3 µg/mL and a selectivity index (SI) of 4.34, 3.44, and 1.5 for P. ostreatus, L. edodes and A. bisporus, were observed, respectively. Docking analysis revealed that, catechin from three mushroom isolates, chlorogenic acid from A. bisporus, kamperferol of P. ostreatus and quercetin from L. edodes, with a C-DOCKER interaction energy in the range of 22.8-37.61 (Kcal/mol) with protease compared to boceprevir ligand of 41.6 (Kcal/mol). Docking of superoxide dismutase, catalase from the three mushrooms, tyrosinase from A. bisporus showed ligand contact surface area with the protein as 252.74 Å2 while receptor contact surface area was 267.23 Å2. Conclusion: P. ostreatus, L. edodes and A. bisporus have potential and remarkable in vitro antiviral activities against SARS-CoV-2. Quercetin from L. edodes, Kaempferol from P. ostreatus, chlorogenic acid and ascorbic acid, catechin, superoxide dismutase and catalase of the three mushrooms extracts were effectively bounded to Mpro of SARS-CoV-2 as conferred by docking analysis.

18.
Materials (Basel) ; 15(5)2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-35269073

RESUMO

Novel glass samples with the composition 75TeO2-5Ta2O5-15Nb2O5-5x (where x = ZnO, MgO, TiO2, or Na2O) in mole percent were prepared. The physical, optical, and gamma radiation shielding properties of the glass samples were studied over a wide energy spectrum ranging between 0.015 and 20 MeV. The glasses' UV-vis spectra were utilized to evaluate the optical energy gap and refractive index. Glass samples had a refractive index ranging from 2.2005 to 2.0967. The results showed that the sample doped with zinc oxide (ZnO) recorded the highest density (ρglass), molar polarizability (αm), molar refraction (Rm), refractive index (n), and third-order nonlinear optical susceptibility (χ3) and the lowest optical energy gap (Eopt) among the samples under investigation. When comparing the current glass system with various standard glass shielding materials, the prepared glass system showed superior shielding performance at energies ranging between 40 and 85 keV. These findings indicate that the prepared glass systems can be used in diagnostic X-rays, especially in dental applications.

19.
Nanomaterials (Basel) ; 12(5)2022 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-35269275

RESUMO

The hybrid nanofluid has sparked new significance in the industrial and engineering sectors because of their applications like water heating in solar and analysis of heat exchanger surfaces. As a result, the current study emphasizes the analysis of heat transfer and Agrawal axisymmetric flow towards a rotational stagnation point incorporated via hybrid nanofluids imposing on a radially permeable shrinking/stretching rotating disk. The leading partial differential equations are refined into ordinary differential equations by using appropriate similarity variables. The bvp4c solver in MATLAB is then employed to solve the simplified system numerically. The current numerical procedure is adequate of generating double solutions when excellent initial guesses are implemented. The results show that the features of fluid flow along with heat transfer rate induced by hybrid nanofluid are significantly influenced. The Nusselt number and the tendency of the wall drag force can be improved as the concentration of nanoparticles and the suction factor are increased. Moreover, the results of the model have been discussed in detail for both solution branches due to the cases of rotating disk parameter as well as non-rotating disk parameter. Therefore, an extraordinary behavior is observed for the branch of lower solutions in the case of rotating disk parameter. In addition, the shear stress in the radial direction upsurges for the first solution but declines for the second solution with higher values of suction. Moreover, the rotating parameter slows down the separation of the boundary layer.

20.
Nanomaterials (Basel) ; 12(6)2022 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-35335789

RESUMO

The purpose of this research is to investigate the consequence of thermophoretic particle deposition (TPD) on the movement of a TiO2/water-based micropolar nanoliquid surface in the existence of a porous medium, a heat source/sink, and bioconvection. Movement, temperature, and mass transfer measurements are also performed in the attendance and nonappearance of nanoparticle aggregation. The nonlinear partial differential equations are transformed into a system of ordinary differential equations using appropriate similarity factors, and numerical research is carried out using the Runge-Kutta-Felhberg 4th/5th order and shooting technique. The obtained results show that improved values of the porous constraint will decline the velocity profile. Improvement in heat source/sink parameter directly affects the temperature profile. Thermophoretic parameter, bioconvection Peclet number, and Lewis number decrease the concentration and bioconvection profiles. Increases in the heat source/sink constraint and solid volume fraction will advance the rate of thermal dispersion. Nanoparticle with aggregation exhibits less impact in case of velocity profile, but shows a greater impact on temperature, concentration, and bioconvection profiles.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA