Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Phys Rev Lett ; 99(8): 086402, 2007 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-17930964

RESUMO

STM studies on K(x)C(60) monolayers reveal new behavior over a wide range of the phase diagram. As x increases from 3 to 5 K(x)C(60) monolayers undergo metal-insulator-metal reentrant phase transitions and exhibit a variety of novel orientational orderings, including a complex 7-molecule, pinwheel-like structure. The proposed driving mechanism for the orientational ordering is the lowering of electron kinetic energy by maximizing the overlap of neighboring molecular orbitals. In insulating (metallic) K(x)C(60) this gives rise to orbital versions of the superexchange (double-exchange) interaction.


Assuntos
Metais , Elementos de Transição , Elétrons , Metais/química
2.
Phys Rev Lett ; 94(13): 136802, 2005 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-15904017

RESUMO

We have measured the elastic and inelastic tunneling properties of isolated Gd@C(82) molecules on Ag(001) using cryogenic scanning tunneling spectroscopy. We find that the dominant inelastic channel is spatially well localized to a particular region of the molecule. Ab initio pseudopotential density-functional theory calculations indicate that this channel arises from a vibrational cage mode. We further show that the observed inelastic tunneling localization is explained by strong localization in the molecular electron-phonon coupling to this mode.

3.
Science ; 310(5747): 468-70, 2005 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-16239471

RESUMO

We present a low-temperature scanning tunneling microscopy (STM) study of K(x)C60 monolayers on Au(111) for 3 < or = x < or = 4. The STM spectrum evolves from one that is characteristic of a metal at x = 3 to one that is characteristic of an insulator at x = 4. This electronic transition is accompanied by a dramatic structural rearrangement of the C60 molecules. The Jahn-Teller effect, a charge-induced mechanical deformation of molecular structure, is directly visualized in the K4C60 monolayer at the single-molecule level. These results, along with theoretical analyses, provide strong evidence that the transition from metal to insulator in K(x)C60 monolayers is caused by the Jahn-Teller effect.

4.
Science ; 304(5668): 281-4, 2004 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-15016961

RESUMO

We report a method for controllably attaching an arbitrary number of charge dopant atoms directly to a single, isolated molecule. Charge-donating K atoms adsorbed on a silver surface were reversibly attached to a C60 molecule by moving it over K atoms with a scanning tunneling microscope tip. Spectroscopic measurements reveal that each attached K atom donates a constant amount of charge (approximately 0.6 electron charge) to the C60 host, thereby enabling its molecular electronic structure to be precisely and reversibly tuned.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA