Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 598(7880): 304-307, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34433207

RESUMO

The unprecedented impact of human activity on Earth's climate and the ongoing increase in global energy demand have made the development of carbon-neutral energy sources ever more important. Hydrogen is an attractive and versatile energy carrier (and important and widely used chemical) obtainable from water through photocatalysis using sunlight, and through electrolysis driven by solar or wind energy1,2. The most efficient solar hydrogen production schemes, which couple solar cells to electrolysis systems, reach solar-to-hydrogen (STH) energy conversion efficiencies of 30% at a laboratory scale3. Photocatalytic water splitting reaches notably lower conversion efficiencies of only around 1%, but the system design is much simpler and cheaper and more amenable to scale-up1,2-provided the moist, stoichiometric hydrogen and oxygen product mixture can be handled safely in a field environment and the hydrogen recovered. Extending our earlier demonstration of a 1-m2 panel reactor system based on a modified, aluminium-doped strontium titanate particulate photocatalyst4, we here report safe operation of a 100-m2 array of panel reactors over several months with autonomous recovery of hydrogen from the moist gas product mixture using a commercial polyimide membrane5. The system, optimized for safety and durability, and remaining undamaged on intentional ignition of recovered hydrogen, reaches a maximum STH of 0.76%. While the hydrogen production is inefficient and energy negative overall, our findings demonstrate that safe, large-scale photocatalytic water splitting, and gas collection and separation are possible. To make the technology economically viable and practically useful, essential next steps are reactor and process optimization to substantially reduce costs and improve STH efficiency, photocatalyst stability and gas separation efficiency.

2.
Proc Natl Acad Sci U S A ; 117(20): 10818-10824, 2020 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-32371483

RESUMO

Recent advances in neutron crystallographic studies have provided structural bases for quantum behaviors of protons observed in enzymatic reactions. Thus, we resolved the neutron crystal structure of a bacterial copper (Cu) amine oxidase (CAO), which contains a prosthetic Cu ion and a protein-derived redox cofactor, topa quinone (TPQ). We solved hitherto unknown structures of the active site, including a keto/enolate equilibrium of the cofactor with a nonplanar quinone ring, unusual proton sharing between the cofactor and the catalytic base, and metal-induced deprotonation of a histidine residue that coordinates to the Cu. Our findings show a refined active-site structure that gives detailed information on the protonation state of dissociable groups, such as the quinone cofactor, which are critical for catalytic reactions.


Assuntos
Amina Oxidase (contendo Cobre)/química , Proteínas de Bactérias/química , Quinonas/química , Domínio Catalítico , Coenzimas/química , Difração de Nêutrons , Prótons
3.
J Am Chem Soc ; 143(28): 10633-10641, 2021 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-34235922

RESUMO

Charge separation is crucial for an efficient artificial photosynthetic process, especially for narrow-bandgap metal sulfides/selenides. The present study demonstrates the application of a p-n junction to particulate metal selenides to enhance photocatalytic Z-scheme overall water splitting (OWS). The constructed p-n junction of CdS-(ZnSe)0.5(CuGa2.5Se4.25)0.5 significantly boosted charge separation. A thin TiO2 coating layer also was introduced to inhibit photocorrosion of CdS and suppress the backward reaction of water formation from hydrogen and oxygen. By employing Pt-loaded TiO2/CdS-(ZnSe)0.5(CuGa2.5Se4.25)0.5 as a hydrogen evolution photocatalyst (HEP), we assembled a Z-scheme OWS system, together with BiVO4:Mo and Au as an oxygen evolution photocatalyst and electron mediator, respectively. An apparent quantum yield of 1.5% at 420 nm was achieved, which is by far the highest among reported particulate photocatalytic Z-scheme OWS systems with metal sulfides/selenides as HEPs. The present work demonstrates that a well-tailored p-n junction structure is effective for promoting charge separation in photocatalysis and opens new pathways for the development of efficient artificial photosynthesis systems involving narrow bandgap photocatalysts.

4.
Nat Mater ; 18(8): 827-832, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31209390

RESUMO

Oxysulfide semiconductors have narrow bandgaps suitable for water splitting under visible-light irradiation, because the electronegative sulfide ions negatively shift the valence band edges of the corresponding oxides1,2. However, the instability of sulfide ions during the water oxidation is a critical obstacle to simultaneous evolution of hydrogen and oxygen3. Here, we demonstrate the activation and stabilization of Y2Ti2O5S2, with a bandgap of 1.9 eV, as a photocatalyst for overall water splitting. On loading of IrO2 and Rh/Cr2O3 as oxygen and hydrogen evolution co-catalysts, respectively, and fine-tuning of the reaction conditions, simultaneous production of stoichiometric amounts of hydrogen and oxygen was achieved on Y2Ti2O5S2 during a 20 h reaction. The discovery of the overall water splitting capabilities of Y2Ti2O5S2 extends the range of promising materials for solar hydrogen production.

5.
Angew Chem Int Ed Engl ; 58(8): 2300-2304, 2019 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-30548747

RESUMO

Photoelectrochemical water splitting is regarded as a promising approach to the production of hydrogen, and the development of efficient photoelectrodes is one aspect of realizing practical systems. In this work, transparent Ta3 N5 photoanodes were fabricated on n-type GaN/sapphire substrates to promote O2 evolution in tandem with a photocathode, to realize overall water splitting. Following the incorporation of an underlying GaN layer, a photocurrent of 6.3 mA cm-2 was achieved at 1.23 V vs. a reversible hydrogen electrode. The transparency of Ta3 N5 to wavelengths longer than 600 nm allowed incoming solar light to be transmitted to a CuInSe2 (CIS), which absorbs up to 1100 nm. A stand-alone tandem cell with a serially-connected dual-CIS unit terminated with a Pt/Ni electrode was thus constructed for H2 evolution. This tandem cell exhibited a solar-to-hydrogen energy conversion efficiency greater than 7 % at the initial stage of the reaction.

6.
Angew Chem Int Ed Engl ; 57(28): 8396-8415, 2018 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-29265720

RESUMO

Solar energy is a natural and effectively permanent resource and so the conversion of solar radiation into chemical or electrical energy is an attractive, although challenging, prospect. Photo-electrochemical (PEC) water splitting is a key aspect of producing hydrogen from solar power. However, practical water oxidation over photoanodes (in combination with water reduction at a photocathode) in PEC cells is currently difficult to achieve because of the large overpotentials in the reaction kinetics and the inefficient photoactivity of the semiconductors. The development of semiconductors that allow high solar-to-hydrogen conversion efficiencies and the utilization of these materials in photoanodes will be a necessary aspect of achieving efficient, stable water oxidation. This Review discusses advances in water oxidation activity over photoanodes of n-type visible-light-responsive (oxy)nitrides and oxides.

7.
J Am Chem Soc ; 139(4): 1675-1683, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-28059504

RESUMO

Development of sunlight-driven water splitting systems with high efficiency, scalability, and cost-competitiveness is a central issue for mass production of solar hydrogen as a renewable and storable energy carrier. Photocatalyst sheets comprising a particulate hydrogen evolution photocatalyst (HEP) and an oxygen evolution photocatalyst (OEP) embedded in a conductive thin film can realize efficient and scalable solar hydrogen production using Z-scheme water splitting. However, the use of expensive precious metal thin films that also promote reverse reactions is a major obstacle to developing a cost-effective process at ambient pressure. In this study, we present a standalone particulate photocatalyst sheet based on an earth-abundant, relatively inert, and conductive carbon film for efficient Z-scheme water splitting at ambient pressure. A SrTiO3:La,Rh/C/BiVO4:Mo sheet is shown to achieve unassisted pure-water (pH 6.8) splitting with a solar-to-hydrogen energy conversion efficiency (STH) of 1.2% at 331 K and 10 kPa, while retaining 80% of this efficiency at 91 kPa. The STH value of 1.0% is the highest among Z-scheme pure water splitting operating at ambient pressure. The working mechanism of the photocatalyst sheet is discussed on the basis of band diagram simulation. In addition, the photocatalyst sheet split pure water more efficiently than conventional powder suspension systems and photoelectrochemical parallel cells because H+ and OH- concentration overpotentials and an IR drop between the HEP and OEP were effectively suppressed. The proposed carbon-based photocatalyst sheet, which can be used at ambient pressure, is an important alternative to (photo)electrochemical systems for practical solar hydrogen production.

8.
Nat Mater ; 15(6): 611-5, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26950596

RESUMO

Photocatalytic water splitting using particulate semiconductors is a potentially scalable and economically feasible technology for converting solar energy into hydrogen. Z-scheme systems based on two-step photoexcitation of a hydrogen evolution photocatalyst (HEP) and an oxygen evolution photocatalyst (OEP) are suited to harvesting of sunlight because semiconductors with either water reduction or oxidation activity can be applied to the water splitting reaction. However, it is challenging to achieve efficient transfer of electrons between HEP and OEP particles. Here, we present photocatalyst sheets based on La- and Rh-codoped SrTiO3 (SrTiO3:La, Rh; ref. ) and Mo-doped BiVO4 (BiVO4:Mo) powders embedded into a gold (Au) layer. Enhancement of the electron relay by annealing and suppression of undesirable reactions through surface modification allow pure water (pH 6.8) splitting with a solar-to-hydrogen energy conversion efficiency of 1.1% and an apparent quantum yield of over 30% at 419 nm. The photocatalyst sheet design enables efficient and scalable water splitting using particulate semiconductors.

9.
Langmuir ; 33(46): 13157-13167, 2017 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-28763231

RESUMO

In situ dynamic observation of model biological cell membranes, formed on a water/gold substrate interface, has been performed by the combination of electrochemical scanning tunneling microscopy and reflection infrared absorption vibrational spectroscopy. Monolayers of 1,2-dihexanoyl-sn-glycero-3-phosphocholine (DHPC) were formed on alkanethiol-modified gold surfaces in a buffer solution, and the microscopic phase transitions driven by electrochemical potential control were observed more in detail than our previous study on the same system [Electrochem. Commun. 2007, 9, 645-650]. This time the transitions were associated with the chemistry of DHPC by the aid of vibrational spectroscopy and the utilization of deuterium-labeled DHPC molecules. A negative potential shift solidifies the fluidic lipid layers into static striped or grainy features without notable chemical reactions. The first positive potential shift over the virginal DHPC monolayer breaks DHPC into choline and the corresponding phosphatidic acid (DHPA). This is the first case of a phospholipid electrochemical reaction microscopically detected at the solid surface.


Assuntos
Fosfolipídeos/química , Deutério , Microscopia de Tunelamento , Transição de Fase , Vibração
10.
Faraday Discuss ; 197: 491-504, 2017 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-28164191

RESUMO

Water splitting using semiconductor photocatalysts has been attracting growing interest as a means of solar energy based conversion of water to hydrogen, a clean and renewable fuel. Z-scheme photocatalytic water splitting based on the two-step excitation of an oxygen evolution photocatalyst (OEP) and a hydrogen evolution photocatalyst (HEP) is a promising approach toward the utilisation of visible light. In particular, a photocatalyst sheet system consisting of HEP and OEP particles embedded in a conductive layer has been recently proposed as a new means of obtaining efficient and scalable redox mediator-free Z-scheme solar water splitting. In this paper, we discuss the advantages and disadvantages of the photocatalyst sheet approach compared to conventional photocatalyst powder suspension and photoelectrochemical systems through an examination of the water splitting activity of Z-scheme systems based on SrTiO3:La,Rh as the HEP and BiVO4:Mo as the OEP. This photocatalyst sheet was found to split pure water much more efficiently than the powder suspension and photoelectrochemical systems, because the underlying metal layer efficiently transfers electrons from the OEP to the HEP. The photocatalyst sheet also outperformed a photoelectrochemical parallel cell during pure water splitting. The effects of H+/OH- concentration overpotentials and of the IR drop are reduced in the case of the photocatalyst sheet compared to photoelectrochemical systems, because the HEP and OEP are situated in close proximity to one another. Therefore, the photocatalyst sheet design is well-suited to efficient large-scale applications. Nevertheless, it is also noted that the photocatalytic activity of these sheets drops markedly with increasing background pressure because of reverse reactions involving molecular oxygen under illumination as well as delays in gas bubble desorption. It is shown that appropriate surface modifications allow the photocatalyst sheet to maintain its water splitting activity at elevated pressure. Accordingly, we conclude that the photocatalyst sheet system is a viable option for the realisation of efficient solar fuel production.

11.
Angew Chem Int Ed Engl ; 56(17): 4739-4743, 2017 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-28323376

RESUMO

Ta3 N5 is a very promising photocatalyst for solar water splitting because of its wide spectrum solar energy utilization up to 600 nm and suitable energy band position straddling the water splitting redox reactions. However, its development has long been impeded by poor compatibility with electrolytes. Herein, we demonstrate a simple sputtering-nitridation process to fabricate high-performance Ta3 N5 film photoanodes owing to successful synthesis of the vital TaOδ precursors. An effective GaN coating strategy is developed to remarkably stabilize Ta3 N5 by forming a crystalline nitride-on-nitride structure with an improved nitride/electrolyte interface. A stable, high photocurrent density of 8 mA cm-2 was obtained with a CoPi/GaN/Ta3 N5 photoanode at 1.2 VRHE under simulated sunlight, with O2 and H2 generated at a Faraday efficiency of unity over 12 h. Our vapor-phase deposition method can be used to fabricate high-performance (oxy)nitrides for practical photoelectrochemical applications.

12.
Small ; 12(39): 5468-5476, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27555609

RESUMO

An improved variation of highly active/durable O2 -evolving LaTiO2 N powder-based photoelectrode has been fabricated by pre-cleaning the powder with mild polysulfonic acid and by homogeneous deposition of CoOx co-catalyst aided by microwave annealing. The treatment in aqueous solution of poly(4-styrene sulfonic acid) results in removal of surface LaTiO2 N layers, forming fine pores in the crystallites. The CoOx co-catalyst by microwave deposition in Co(NH3 )6 Cl3 /ethylene glycol homogeneously covers the particle surface. The LaTiO2 N powder is fabricated into particle-transferred electrodes on Ti thin film supported on solid substrate. The modified LaTiO2 N grains on the electrode serve as a highly active O2 -evolving photoanode achieving 8.9 mA cm-2 of the photocurrent density at 1.23 V versus reversible hydrogen electrode (RHE) in 0.1 m NaOH (pH 13) under solar-simulator irradiation Airmass 1.5 Global (AM 1.5G). The activity has been much improved, compared with conventional LaTiO2 N treated in mineral acid or with CoOx deposited by impregnation. The new electrode also exhibits better durability in fixed-potential chronoamperometric tests under AM 1.5G irradiation.

13.
J Am Chem Soc ; 137(6): 2227-30, 2015 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-25650748

RESUMO

A photoanode of particulate BaTaO2N fabricated by the particle transfer method and modified with a Co cocatalyst generated a photocurrent of 4.2 mA cm(-2) at 1.2 V(RHE) in the photoelectrochemical water oxidation reaction under simulated sunlight (AM1.5G). The half-cell solar-to-hydrogen conversion efficiency (HC-STH) of the photoanode reached 0.7% at 1.0 V(RHE), which was an order of magnitude higher than the previously reported photoanode made from the same material. The faradaic efficiency for oxygen evolution from water was virtually 100% during the reaction for 6 h, attesting to the robustness of the oxynitride.

14.
J Am Chem Soc ; 137(16): 5452-60, 2015 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-25872660

RESUMO

Phycocyanobilin, a light-harvesting and photoreceptor pigment in higher plants, algae, and cyanobacteria, is synthesized from biliverdin IXα (BV) by phycocyanobilin:ferredoxin oxidoreductase (PcyA) via two steps of two-proton-coupled two-electron reduction. We determined the neutron structure of PcyA from cyanobacteria complexed with BV, revealing the exact location of the hydrogen atoms involved in catalysis. Notably, approximately half of the BV bound to PcyA was BVH(+), a state in which all four pyrrole nitrogen atoms were protonated. The protonation states of BV complemented the protonation of adjacent Asp105. The "axial" water molecule that interacts with the neutral pyrrole nitrogen of the A-ring was identified. His88 Nδ was protonated to form a hydrogen bond with the lactam O atom of the BV A-ring. His88 and His74 were linked by hydrogen bonds via H3O(+). These results imply that Asp105, His88, and the axial water molecule contribute to proton transfer during PcyA catalysis.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Biliverdina/metabolismo , Oxirredutases/química , Oxirredutases/metabolismo , Synechocystis/enzimologia , Cristalografia , Cristalografia por Raios X , Modelos Moleculares , Difração de Nêutrons , Prótons , Synechocystis/química , Synechocystis/metabolismo
15.
J Am Chem Soc ; 137(15): 5053-60, 2015 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-25802975

RESUMO

Photoelectrochemical (PEC) devices that use semiconductors to absorb solar light for water splitting offer a promising way toward the future scalable production of renewable hydrogen fuels. However, the charge recombination in the photoanode/electrolyte (solid/liquid) junction is a major energy loss and hampers the PEC performance from being efficient. Here, we show that this problem is addressed by the conformal deposition of an ultrathin p-type NiO layer on the photoanode to create a buried p/n junction as well as to reduce the charge recombination at the surface trapping states for the enlarged surface band bending. Further, the in situ formed hydroxyl-rich and hydroxyl-ion-permeable NiOOH enables the dual catalysts of CoO(x) and NiOOH for the improved water oxidation activity. Compared to the CoO(x) loaded BiVO4 (CoO(x)/BiVO4) photoanode, the ∼6 nm NiO deposited NiO/CoO(x)/BiVO4 photoanode triples the photocurrent density at 0.6 V(RHE) under AM 1.5G illumination and enables a 1.5% half-cell solar-to-hydrogen efficiency. Stoichiometric oxygen and hydrogen are generated with Faraday efficiency of unity over 12 h. This strategy could be applied to other narrow band gap semiconducting photoanodes toward the low-cost solar fuel generation devices.

16.
Langmuir ; 31(19): 5449-55, 2015 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-25913903

RESUMO

A mixed monolayer of 1,2-dihexanoyl-sn-glycero-3-phospho-l-serine (DHPS) and 1,2-dihexanoyl-sn-glycero-3-phosphocholine (DHPC) on an 1-octanethiol-modified gold substrate was visualized on the nanometer scale using in situ scanning tunneling microscopy (STM) in aqueous solution. DHPS clusters were evident as spotty domains. STM enabled us to distinguish DHPS molecules from DHPC molecules depending on their electronic structures. The signal of the DHPS domains was abolished by neutralization with Ca(2+). The addition of the PS + Ca(2+)-binding protein of annexin V to the Ca(2+)-treated monolayer gave a number of spots corresponding to a single annexin V molecule.


Assuntos
1,2-Dipalmitoilfosfatidilcolina/química , Fosfatidilserinas/química , Anexina A5/química , Cálcio/química , Ouro/química , Microscopia de Tunelamento , Tamanho da Partícula , Soluções , Compostos de Sulfidrila/química , Água/química
17.
J Struct Funct Genomics ; 15(3): 131-5, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24442837

RESUMO

We plan to design a high-resolution biomacromolecule neutron time-of-flight diffractometer, which allows us to collect data from crystals with unit cells above 250 Å, in the materials and life science experimental facility at the Japan Proton Accelerator Research Complex. This new diffractometer can be used for a detailed analysis of large proteins such as membrane proteins and supermolecular complex. A quantitative comparison of the intensity and pulse width of a decoupled moderator (DM) against a coupled moderator (CM) considering the pulse width time resolution indicated that the DM satisfies the criteria for our diffractometer rather than the CM. The results suggested that a characteristic feature of the DM, i.e., narrow pulse width with a short tail, is crucial for the separation of Bragg reflections from crystals with large unit cells. On the other hand, it should be noted that the weak signals from the DM are buried under the high-level background caused by the incoherent scattering of hydrogen atoms, especially, in the case of large unit cells. We propose a profile-fitting integration method combined with the energy loss functions and a background subtraction method achieved by employing the statistics-sensitive nonlinear iterative peak-clipping algorithm.


Assuntos
Cristalografia por Raios X/instrumentação , Cristalografia por Raios X/métodos , Proteínas de Membrana/ultraestrutura , Complexos Multiproteicos/ultraestrutura , Cristalização/métodos , Difração de Nêutrons/métodos
18.
Biochim Biophys Acta ; 1834(8): 1642-7, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23714114

RESUMO

The structure of the free-form of Achromobacter protease I (API) at pD 8.0 was refined by simultaneous use of single crystal X-ray and neutron diffraction data sets to investigate the protonation states of key catalytic residues of the serine protease. Occupancy refinement of the catalytic triad in the active site of API free-form showed that ca. 30% of the imidazole ring of H57 and ca. 70% of the hydroxyl group of S194 were deuterated. This observation indicates that a major fraction of S194 is protonated in the absence of a substrate. The protonation state of the catalytic triad in API was compared with the bovine ß-trypsin-BPTI complex. The comparison led to the hypothesis that close contact of a substrate with S194 could lower the acidity of its hydroxyl group, thereby allowing H57 to extract the hydrogen from the hydroxyl group of S194. H210, which is a residue specific to API, does not form a hydrogen bond with the catalytic triad residue D113. Instead, H210 forms a hydrogen bond network with S176, H177 and a water molecule. The close proximity of the bulky, hydrophobic residue W169 may protect this hydrogen bond network, and this protection may stabilize the function of API over a wide pH range.


Assuntos
Cristalografia por Raios X , Difração de Nêutrons , Prótons , Serina Endopeptidases/química , Água/química , Animais , Aprotinina/metabolismo , Sítios de Ligação , Catálise , Domínio Catalítico , Bovinos , Ligação de Hidrogênio , Modelos Moleculares , Conformação Proteica , Serina Endopeptidases/metabolismo , Tripsina/metabolismo
19.
Biochim Biophys Acta ; 1834(8): 1532-8, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23712263

RESUMO

The protonation states and hydration structures of the α-thrombin-bivalirudin complex were studied by joint XN refinement of the single crystal X-ray and neutron diffraction data at resolutions of 1.6 and 2.8Å, respectively. The atomic distances were estimated by carrying out X-ray crystallographic analysis at 1.25Å resolution. The complex represents a model of the enzyme-product (EP) complex of α-thrombin. The neutron scattering length maps around the active site suggest that the side chain of H57/H was deuterated. The joint XN refinement showed that occupancies for Dδ1 and Dε2 of H57/H were 1.0 and 0.7, respectively. However, no significant neutron scattering length density was observed around the hydroxyl oxygen Oγ of S195/H, which was close to the carboxylic carbon atom of dFPR-COOH. These observations suggest that the Oγ atom of S195/H is deprotonated and maintains its nucleophilicity in the EP complex. In addition to the active site, the hydration structures of the S1 subsite and the Exosite I, which are involved in the recognition of bivalirudin, are presented.


Assuntos
Hirudinas/química , Difração de Nêutrons , Fragmentos de Peptídeos/química , Trombina/química , Água/química , Sítios de Ligação , Domínio Catalítico , Cristalografia por Raios X , Hirudinas/metabolismo , Humanos , Ligação de Hidrogênio , Modelos Moleculares , Fragmentos de Peptídeos/metabolismo , Conformação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Trombina/metabolismo
20.
J Chem Phys ; 140(10): 104709, 2014 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-24628198

RESUMO

We have measured the surface phonon dispersion curves on the hydrogen-terminated Si(110)-(1×1) surface with the two-dimensional space group of p2mg along the two highly symmetric and rectangular directions of ΓX and ΓX' using high-resolution electron-energy-loss spectroscopy. All the essential energy-loss peaks on H:Si(110) were assigned to the vibrational phonon modes by using the selection rules of inelastic electron scattering including the glide-plane symmetry. Actually, the surface phonon modes of even-symmetry to the glide plane (along ΓX) were observed in the first Brillouin zone, and those of odd-symmetry to the glide plane were in the second Brillouin zone. The detailed assignment was made by referring to theoretical phonon dispersion curves of Gräschus et al. [Phys. Rev. B 56, 6482 (1997)]. We found that the H-Si stretching and bending modes, which exhibit highly anisotropic dispersion, propagate along ΓX direction as a one-dimensional phonon. Judging from the surface structure as well as our classical and quantum mechanical estimations, the H-Si stretching phonon propagates by a direct repulsive interaction between the nearest neighbor H atoms facing each other along ΓX, whereas the H-Si bending phonon propagates by indirect interaction through the substrate Si atomic linkage.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA