Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 243
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
EMBO J ; 42(15): e111247, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37357972

RESUMO

Social behavior is essential for health, survival, and reproduction of animals; however, the role of astrocytes in social behavior remains largely unknown. The transmembrane protein CD38, which acts both as a receptor and ADP-ribosyl cyclase to produce cyclic ADP-ribose (cADPR) regulates social behaviors by promoting oxytocin release from hypothalamic neurons. CD38 is also abundantly expressed in astrocytes in the postnatal brain and is important for astroglial development. Here, we demonstrate that the astroglial-expressed CD38 plays an important role in social behavior during development. Selective deletion of CD38 in postnatal astrocytes, but not in adult astrocytes, impairs social memory without any other behavioral abnormalities. Morphological analysis shows that depletion of astroglial CD38 in the postnatal brain interferes with synapse formation in the medial prefrontal cortex (mPFC) and hippocampus. Moreover, astroglial CD38 expression promotes synaptogenesis of excitatory neurons by increasing the level of extracellular SPARCL1 (also known as Hevin), a synaptogenic protein. The release of SPARCL1 from astrocytes is regulated by CD38/cADPR/calcium signaling. These data demonstrate a novel developmental role of astrocytes in neural circuit formation and regulation of social behavior in adults.


Assuntos
Antígenos CD , ADP-Ribose Cíclica , Animais , ADP-Ribosil Ciclase 1/genética , Antígenos CD/metabolismo , ADP-Ribose Cíclica/metabolismo , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Astrócitos/metabolismo , Sinapses/metabolismo
2.
Am J Pathol ; 194(5): 693-707, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38309428

RESUMO

Glucose lowering independently reduces liver fibrosis in human nonalcoholic fatty liver disease. This study investigated the impact of diabetes on steatohepatitis and established a novel mouse model for diabetic steatohepatitis. Male C57BL/6J mice were fed a 60% high-fat diet (HFD) and injected with carbon tetrachloride (CCl4) and streptozotocin (STZ) to induce diabetes. The HFD+CCl4+STZ group showed more severe liver steatosis, hepatocyte ballooning, and regenerative nodules compared with other groups. Diabetes up-regulated inflammatory cytokine-associated genes and increased the M1/M2 macrophage ratios in the liver. Single-cell RNA sequencing analysis of nonparenchymal cells in the liver showed that diabetes reduced Kupffer cells and increased bone marrow-derived recruited inflammatory macrophages, such as Ly6Chi-RM. Diabetes globally reduced liver sinusoidal endothelial cells (LSECs). Furthermore, genes related to the receptor for advanced glycation end products (RAGE)/Toll-like receptor 4 (TLR4) were up-regulated in Ly6Chi-RM and LSECs in mice with diabetes, suggesting a possible role of RAGE/TLR4 signaling in the interaction between inflammatory macrophages and LSECs. This study established a novel diabetic steatohepatitis model using a combination of HFD, CCl4, and STZ. Diabetes exacerbated steatosis, hepatocyte ballooning, fibrosis, regenerative nodule formation, and the macrophage M1/M2 ratios triggered by HFD and CCl4. Single-cell RNA sequencing analysis indicated that diabetes activated inflammatory macrophages and impairs LSECs through the RAGE/TLR4 signaling pathway. These findings open avenues for discovering novel therapeutic targets for diabetic steatohepatitis.


Assuntos
Diabetes Mellitus , Hepatopatia Gordurosa não Alcoólica , Camundongos , Masculino , Humanos , Animais , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo , Células Endoteliais/metabolismo , Transcriptoma , Camundongos Endogâmicos C57BL , Fígado/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia , Cirrose Hepática/patologia , Diabetes Mellitus/metabolismo , Diabetes Mellitus/patologia , Dieta Hiperlipídica/efeitos adversos
3.
Chembiochem ; : e202400197, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38940417

RESUMO

Water-soluble phthalocyanine (Pc) derivatives have been regarded as potential G-quadruplex (G4) nucleic acid-targeting ligands for anticancer therapy and have been extensively studied as effective photosensitizers for photodynamic therapy (PDT). Understanding how photosensitizers interact with nucleic acids and the subsequent photolytic reactions is essential for deciphering the initial steps of PDT, thereby aiding in the development of new photosensitizing agents. In this study, we found that red-light irradiation of a mixture of a Zn(II) Pc derivative and an all-parallel G4 DNA leads to catalytic and selective photodegradation of the DNA by reactive oxygen species (ROS) generated from the Zn(II) Pc derivative bound to DNA through a reaction mechanism similar to that of an enzyme reaction. This finding provides a novel insight into the molecular design of a photosensitizer to enhance its PDT efficacy.

4.
Brain Behav Immun ; 116: 329-348, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38142917

RESUMO

BACKGROUND: Latent chronic inflammation has been proposed as a key mediator of multiple derangements in metabolic syndrome (MetS), which are increasingly becoming recognized as risk factors for age-related cognitive decline. However, the question remains whether latent chronic inflammation indeed induces brain inflammation and cognitive decline. METHODS: A mouse model of latent chronic inflammation was constructed by a chronic subcutaneous infusion of low dose lipopolysaccharide (LPS) for four weeks. A receptor for advanced glycation end products (RAGE) knockout mouse, a chimeric myeloid cell specific RAGE-deficient mouse established by bone marrow transplantation and a human endogenous secretory RAGE (esRAGE) overexpressing adenovirus system were utilized to examine the role of RAGE in vivo. The cognitive function was examined by a Y-maze test, and the expression level of genes was determined by quantitative RT-PCR, western blot, immunohistochemical staining, or ELISA assays. RESULTS: Latent chronic inflammation induced MetS features in C57BL/6J mice, which were associated with cognitive decline and brain inflammation characterized by microgliosis, monocyte infiltration and endothelial inflammation, without significant changes in circulating cytokines including TNF-α and IL-1ß. These changes as well as cognitive impairment were rescued in RAGE knockout mice or chimeric mice lacking RAGE in bone marrow cells. P-selectin glycoprotein ligand-1 (PSGL-1), a critical adhesion molecule, was induced in circulating mononuclear cells in latent chronic inflammation in wild-type but not RAGE knockout mice. These inflammatory changes and cognitive decline induced in the wild-type mice were ameliorated by an adenoviral increase in circulating esRAGE. Meanwhile, chimeric RAGE knockout mice possessing RAGE in myeloid cells were still resistant to cognitive decline and brain inflammation. CONCLUSIONS: These findings indicate that RAGE in inflammatory cells is necessary to mediate stimuli of latent chronic inflammation that cause brain inflammation and cognitive decline, potentially by orchestrating monocyte activation via regulation of PSGL-1 expression. Our results also suggest esRAGE-mediated inflammatory regulation as a potential therapeutic option for cognitive dysfunction in MetS with latent chronic inflammation.


Assuntos
Disfunção Cognitiva , Encefalite , Síndrome Metabólica , Animais , Humanos , Camundongos , Inflamação , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptor para Produtos Finais de Glicação Avançada
5.
Parasite Immunol ; 46(6): e13039, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38838041

RESUMO

Ticks are notorious blood-sucking ectoparasites that affect both humans and animals. They serve as a unique vector of various deadly diseases. Here, we have shown the roles of the receptor for advanced glycation end products (RAGE) during repeated infestations by the tick Haemaphysalis longicornis using RAGE-/- mice. In primary infestation, a large blood pool developed, which was flooded with numerous RBCs, especially during the rapid feeding phase of the tick both in wild-type (wt) and RAGE-/- mice. Very few inflammatory cells were detected around the zones of haemorrhage in the primary infestations. However, the number of inflammatory cells gradually increased in the subsequent tick infestations, and during the third infestations, the number of inflammatory cells reached to the highest level (350.3 ± 16.8 cells/focus). The site of attachment was totally occupied by the inflammatory cells in wt mice, whereas very few cells were detected at the ticks' biting sites in RAGE-/- mice. RAGE was highly expressed during the third infestation in wt mice. In the third infestation, infiltration of CD44+ lymphocytes, eosinophils and expression of S100A8 and S100B significantly increased at the biting sites of ticks in wt, but not in RAGE-/- mice. In addition, peripheral eosinophil counts significantly increased in wt but not in RAGE-/- mice. Taken together, our study revealed that RAGE-mediated inflammation and eosinophils played crucial roles in the tick-induced inflammatory reactions.


Assuntos
Inflamação , Ixodidae , Camundongos Knockout , Receptor para Produtos Finais de Glicação Avançada , Infestações por Carrapato , Animais , Ixodidae/genética , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Receptor para Produtos Finais de Glicação Avançada/genética , Camundongos , Infestações por Carrapato/imunologia , Camundongos Endogâmicos C57BL , Feminino , Comportamento Alimentar , Haemaphysalis longicornis
6.
J Gastroenterol Hepatol ; 39(7): 1413-1421, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38348885

RESUMO

BACKGROUND AND AIM: Safe radical hepatectomy is important for patients with colorectal liver metastases complicated by sinusoidal obstruction syndrome (SOS) after oxaliplatin-based chemotherapy. This study aimed to investigate the impact of preoperative administration of cilostazol (CZ), an oral selective phosphodiesterase III inhibitor, on hepatectomy in rat SOS model. MATERIAL AND METHODS: Rats were divided into NL (normal liver), SOS (monocrotaline [MCT]-treated), and SOS + CZ (MCT + CZ-treated) groups. MCT or CZ was administered orally, and a 30% partial hepatectomy was performed 48 h after MCT administration. Postoperative survival rates were evaluated (n = 9, for each). Other rats were sacrificed on postoperative days (POD) 1 and 3 and evaluated histologically, immunohistochemically, biochemically, and using transmission electron microscopy (TEM), focusing particularly on SOS findings, liver damage, and liver sinusoidal endothelial cell (LSEC) injury. RESULTS: The cumulative 10-day postoperative survival rate was significantly higher in the SOS + CZ group than in the SOS group (88.9% vs 33.3%, P = 0.001). Total SOS scores were significantly lower in the SOS + CZ group than in the SOS group on both POD 1 and 3. Serum biochemistry and immunohistochemistry showed that CZ reduced liver damage after hepatectomy. TEM revealed that LSECs were significantly preserved morphologically in the SOS + CZ group than in the SOS group on POD 1 (86.1 ± 8.2% vs 63.8 ± 9.3%, P = 0.003). CONCLUSION: Preoperative CZ administration reduced liver injury by protecting LSECs and improved the prognosis after hepatectomy in rats with SOS.


Assuntos
Cilostazol , Modelos Animais de Doenças , Hepatectomia , Hepatopatia Veno-Oclusiva , Inibidores da Fosfodiesterase 3 , Animais , Hepatopatia Veno-Oclusiva/prevenção & controle , Hepatopatia Veno-Oclusiva/etiologia , Hepatopatia Veno-Oclusiva/patologia , Cilostazol/farmacologia , Hepatectomia/efeitos adversos , Masculino , Inibidores da Fosfodiesterase 3/farmacologia , Inibidores da Fosfodiesterase 3/uso terapêutico , Prognóstico , Oxaliplatina/efeitos adversos , Neoplasias Hepáticas/cirurgia , Neoplasias Hepáticas/secundário , Neoplasias Hepáticas/tratamento farmacológico , Taxa de Sobrevida , Ratos , Tetrazóis/administração & dosagem , Tetrazóis/farmacologia , Neoplasias Colorretais/patologia , Fígado/patologia , Ratos Sprague-Dawley
7.
Clin Immunol ; 250: 109317, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37015317

RESUMO

The receptor for advanced glycation end-products (RAGE) is a pattern recognition receptor that regulates inflammation, cell migration, and cell fate. Systemic lupus erythematosus (SLE) is a chronic multiorgan autoimmune disease. To understand the function of RAGE in SLE, we generated RAGE-deficient (Ager-/-) lupus-prone mice by backcrossing MRL/MpJ-Faslpr/J (MRL-lpr) mice with Ager-/- C57BL/6 mice. In 18-week-old Ager-/- MRL-lpr, the weights of the spleen and lymph nodes, as well as the frequency of CD3+CD4-CD8- cells, were significantly decreased. Ager-/- MRL-lpr mice had significantly reduced urine albumin/creatinine ratios and markedly improved renal pathological scores. Moreover, neutrophil infiltration and neutrophil extracellular trap formation in the glomerulus were significantly reduced in Ager-/- MRL-lpr. Our study is the first to reveal that RAGE can have a pathologic role in immune cells, particularly neutrophils and T cells, in inflammatory tissues and suggests that the inhibition of RAGE may be a potential therapeutic strategy for SLE.


Assuntos
Armadilhas Extracelulares , Lúpus Eritematoso Sistêmico , Nefrite Lúpica , Camundongos , Animais , Receptor para Produtos Finais de Glicação Avançada/genética , Reação de Maillard , Camundongos Endogâmicos MRL lpr , Camundongos Endogâmicos C57BL
8.
PLoS Pathog ; 17(6): e1009649, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34081755

RESUMO

Parasitic helminths can reside in humans owing to their ability to disrupt host protective immunity. Receptor for advanced glycation end products (RAGE), which is highly expressed in host skin, mediates inflammatory responses by regulating the expression of pro-inflammatory cytokines and endothelial adhesion molecules. In this study, we evaluated the effects of venestatin, an EF-hand Ca2+-binding protein secreted by the parasitic helminth Strongyloides venezuelensis, on RAGE activity and immune responses. Our results demonstrated that venestatin bound to RAGE and downregulated the host immune response. Recombinant venestatin predominantly bound to the RAGE C1 domain in a Ca2+-dependent manner. Recombinant venestatin effectively alleviated RAGE-mediated inflammation, including footpad edema in mice, and pneumonia induced by an exogenous RAGE ligand. Infection experiments using S. venezuelensis larvae and venestatin silencing via RNA interference revealed that endogenous venestatin promoted larval migration from the skin to the lungs in a RAGE-dependent manner. Moreover, endogenous venestatin suppressed macrophage and neutrophil accumulation around larvae. Although the invasion of larvae upregulated the abundance of RAGE ligands in host skin tissues, mRNA expression levels of tumor necrosis factor-α, cyclooxygenase-2, endothelial adhesion molecules vascular cell adhesion protein-1, intracellular adhesion molecule-1, and E-selectin were suppressed by endogenous venestatin. Taken together, our results indicate that venestatin suppressed RAGE-mediated immune responses in host skin induced by helminthic infection, thereby promoting larval migration. The anti-inflammatory mechanism of venestatin may be targeted for the development of anthelminthics and immunosuppressive agents for the treatment of RAGE-mediated inflammatory diseases.


Assuntos
Proteínas de Helminto/metabolismo , Interações Hospedeiro-Parasita/fisiologia , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Strongyloides/imunologia , Strongyloides/metabolismo , Estrongiloidíase/metabolismo , Animais , Larva/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Strongyloides/patogenicidade
9.
Ann Surg Oncol ; 30(5): 3125-3136, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36042102

RESUMO

BACKGROUND: The lipid scavenger receptor cluster of differentiation 36 (CD36) has been shown to have a pro-metastatic function in several cancers. Adipose tissue, a favorable site for peritoneal metastasis (PM) from gastric cancer (GC), promotes this process by providing free fatty acids (FFAs); however, the role of CD36 in PM progression from GC remains to be elucidated. MATERIALS AND METHODS: We evaluated CD36 expression in the GC cells under various conditions. CD36 overexpressing (CD36OE) MKN45 cells were prepared and their migration and invasive properties were assessed. A PM mouse model was used to investigate the biological effects of palmitic acid (PA) and CD36. Furthermore, we examined the clinical role of CD36 expression in 82 human PM samples by immunohistochemical staining. RESULTS: Hypoxia markedly increased CD36 expression in GC cells. In normoxia, only CD36OE MKN45 cells treated with PA showed an increase in migration and invasion abilities. An increased expression of active Rac1 and Cdc42 was observed, which decreased following etomoxir treatment. Conversely, hypoxia increased those capacities of both vector and CD36OE MKN45 cells. In a mouse model transplanted with CD36OE MKN45 cells, more peritoneal tumors were observed in the high-fat diet group than those in the normal diet group. In clinical samples, 80% of PM lesions expressed CD36, consistent with hypoxic regions, indicating a significant association with prognosis. CONCLUSION: Our findings indicate that a hypoxia in the peritoneal cavity induces CD36 expression in GC cells, which contributes to PM through the uptake of FFAs.


Assuntos
Antígenos CD36 , Hipóxia , Neoplasias Peritoneais , Neoplasias Gástricas , Neoplasias Gástricas/patologia , Neoplasias Peritoneais/patologia , Metástase Neoplásica , Antígenos CD36/metabolismo , Humanos , Masculino , Ácidos Graxos/metabolismo , Ácido Palmítico
10.
J Fluoresc ; 33(6): 2431-2439, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37093333

RESUMO

Water-soluble cationic gallium(III)-Pc complex (GaPc) is capable of photogenerating ROSs but does not exhibit photocytotoxicity in vivo. GaPc binds selectively, through a π-π stacking interaction, to the 5'-terminal G-quartet of a G-quadruplex DNA. The photo-excited state of GaPc of the complex is effectively quenched through electron transfer (ET) from the ground state of DNA guanine (G) bases to the photo-excited state of GaPc (ET(G-GaPc)). Hence the loss of the photocytotoxicity of GaPc in vivo is most likely to be due to the effective quenching of its photo-excited state through ET(G-GaPc). In this study, we investigated the photochemical properties of GaPc in the presence of duplex DNAs formed from a series of sequences to elucidate the nature of ET(G-GaPc). We found that ET(G-GaPc) is allowed in electrostatic complexes between GaPc and G-containing duplex DNAs and that the rate of ET(G-GaPc) (kET(G-GaPc)) can be reasonably interpreted in terms of the distance between Pc moiety of GaPc and DNA G base in the complex. We also found that the quantum yields of singlet oxygen (1O2) generation (ΦΔs) determined for the GaPc-duplex DNA complexes were similar to the value reported for free GaPc (Fujishiro R, Sonoyama H, Ide Y, et al (2019) J Inorg Biochem 192:7-16), indicating that ET(G-GaPc) in the complex is rather limited. These results clearly demonstrated that photocytotoxicity of GaPc is crucially affected by ET(G-GaPc). Thus elucidation of interaction of a photosensitizer with biomolecules, i.e., an initial process in PDT, would be helpful to understand its subsequent photochemical processes.


Assuntos
DNA , Elétrons , Transporte de Elétrons , DNA/química , Isoindóis
11.
Artigo em Inglês | MEDLINE | ID: mdl-37851159

RESUMO

Objective structured clinical examination (OSCE) is widely used to assess medical students' clinical skills. Virtual OSCEs were used in place of in-person OSCEs during the COVID-19 pandemic; however, their reliability is yet to be robustly analyzed. By applying generalizability (G) theory, this study aimed to evaluate the reliability of a hybrid OSCE, which admixed in-person and online methods, and gain insights into improving OSCEs' reliability. During the 2020-2021 hybrid OSCEs, one examinee, one rater, and a vinyl mannequin for physical examination participated onsite, and a standardized simulated patient (SP) for medical interviewing and another rater joined online in one virtual breakout room on an audiovisual conferencing system. G-coefficients and 95% confidence intervals of the borderline score, namely border zone (BZ), under the standard 6-station, 2-rater, and 6-item setting were calculated. G-coefficients of in-person (2017-2019) and hybrid OSCEs (2020-2021) under the standard setting were estimated to be 0.624, 0.770, 0.782, 0.759, and 0.823, respectively. The BZ scores were estimated to be 2.43-3.57, 2.55-3.45, 2.59-3.41, 2.59-3.41, and 2.51-3.49, respectively, in the score range from 1 to 6. Although hybrid OSCEs showed reliability comparable to in-person OSCEs, they need further improvement as a very high-stakes examination. In addition to increasing clinical vignettes, having more proficient online/on-demand raters and/or online SPs for medical interviews could improve the reliability of OSCEs. Reliability can also be ensured through supplementary examination and by increasing the number of online raters for a small number of students within the BZs.

12.
Int J Mol Sci ; 24(22)2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-38003518

RESUMO

Sinusoidal obstruction syndrome (SOS) is a serious liver disorder that occurs after liver transplantation, hematopoietic stem cell transplantation, and the administration of anticancer drugs. Since SOS is a life-threatening condition that can progress to liver failure, early detection and prompt treatment are required for the survival of patients with this condition. In this study, female CD1 mice were divided into treatment and control groups after the induction of an SOS model using monocrotaline (MCT, 270 mg/kg body weight intraperitoneally). The mice were analyzed at 0, 12, 24, and 48 h after MCT administration, and blood and liver samples were collected for assays and histopathology tests. SOS was observed in the livers 12 h after MCT injection. In addition, immunohistochemical findings demonstrated CD42b-positive platelet aggregations, positive signals for von Willebrand factor (VWF), and a disintegrin-like metalloproteinase with thrombospondin type 1 motifs 13 (ADAMTS13) in the MCT-exposed liver sinusoid. Although ADAMTS13's plasma concentrations peaked at 12 h, its enzyme activity continuously decreased by 75% at 48 h and, inversely and proportionally, concentrations in the VWF-A2 domain, in which the cleavage site of ADAMTS13 is located, increased after MCT injection. These findings suggest that the plasma concentration and activity of ADAMTS13 could be useful biomarkers for early detection and therapeutic intervention in patients with SOS.


Assuntos
Hepatopatia Veno-Oclusiva , Transplante de Fígado , Humanos , Camundongos , Feminino , Animais , Hepatopatia Veno-Oclusiva/induzido quimicamente , Hepatopatia Veno-Oclusiva/diagnóstico , Fator de von Willebrand/metabolismo , Prognóstico , Transplante de Fígado/efeitos adversos , Proteína ADAMTS13
13.
Biochemistry ; 61(7): 523-534, 2022 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-35230084

RESUMO

Heme binds selectively to the 3'-terminal G-quartet of all parallel G-quadruplex DNAs to form stable heme-DNA complexes. Interestingly, the heme-DNA complexes exhibit various spectroscopic and functional properties similar to those of hemoproteins. Since the nature of the axial ligands is crucial in determining the physicochemical properties of heme, identification and characterization of the axial ligands in a heme-DNA complex are essential to elucidate the structure-function relationship in the complex. NMR studies of a complex possessing a low-spin ferric heme with a water molecule (H2O) and cyanide ion (CN-) as the axial ligands allowed detailed characterization of the physicochemical nature of the axial H2O ligand. We found that the in-plane asymmetry of the heme electronic structure of the complex is not largely affected by the axial H2O coordination, indicating that the H2O confined in the hydrophobic interface between the heme and G-quartet planes of the complex rotates about the coordination bond with respect to the heme. The effect of the hydrogen(H)/deuterium(D) isotope replacement of the axial H2O on the heme electronic structure was manifested in the isotope shifts of paramagnetically shifted heme methyl proton signals of the complex in such a manner that three resolved peaks associated with axial H2O, HDO, and D2O were observed for each of the heme methyl proton signals. These findings provide not only the basis for an understanding of the nature of the unique axial H2O but also an insight into the molecular mechanism responsible for the control of the heme reactivity in the heme-DNA complex.


Assuntos
Quadruplex G , Hemeproteínas , DNA/química , Heme/química , Ligantes
14.
Cancer Sci ; 113(10): 3376-3389, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35838233

RESUMO

Although the human papillomavirus (HPV) vaccine is effective for preventing cervical cancers, this vaccine does not eliminate pre-existing infections, and alternative strategies have been warranted. Here, we report that FOXP4 is a new target molecule for differentiation therapy of cervical intraepithelial neoplasia (CIN). An immunohistochemical study showed that FOXP4 was expressed in columnar epithelial, reserve, and immature squamous cells, but not in mature squamous cells of the normal uterine cervix. In contrast with normal mature squamous cells, FOXP4 was expressed in atypical squamous cells in CIN and squamous cell carcinoma lesions. The FOXP4-positive areas significantly increased according to the CIN stages from CIN1 to CIN3. In monolayer cultures, downregulation of FOXP4 attenuated proliferation and induced squamous differentiation in CIN1-derived HPV 16-positive W12 cells via an ELF3-dependent pathway. In organotypic raft cultures, FOXP4-downregulated W12 cells showed mature squamous phenotypes of CIN lesions. In human keratinocyte-derived HaCaT cells, FOXP4 downregulation also induced squamous differentiation via an ELF3-dependent pathway. These findings suggest that downregulation of FOXP4 inhibits cell proliferation and promotes the differentiation of atypical cells in CIN lesions. Based on these results, we propose that FOXP4 is a novel target molecule for nonsurgical CIN treatment that inhibits CIN progression by inducing squamous differentiation.


Assuntos
Carcinoma de Células Escamosas , Infecções por Papillomavirus , Displasia do Colo do Útero , Neoplasias do Colo do Útero , Carcinoma de Células Escamosas/patologia , Proteínas de Ligação a DNA , Feminino , Fatores de Transcrição Forkhead , Humanos , Papillomaviridae , Infecções por Papillomavirus/patologia , Proteínas Proto-Oncogênicas c-ets , Sulfonamidas , Fatores de Transcrição , Neoplasias do Colo do Útero/patologia
15.
Cancer Immunol Immunother ; 71(4): 777-789, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34398301

RESUMO

Chronic inflammation contributes to tumor development by creating a local microenvironment that facilitates neoplastic transformation and potentiates the progression of cancer. Esophageal cancer (EC) is an inflammation-associated malignancy with a poor prognosis. The nature of the switch between chronic inflammation of the esophagus and EC-related immunological changes remains unclear. Here, we examined the dynamic alterations of immune cells at different stages of chronic esophagitis, Barrett's esophagus (BE) and EC using an esophageal spontaneous carcinogenesis rat model. We also investigated the anticancer effects of metformin. To stimulate EC carcinogenesis, chronic gastroduodenal reflux esophagitis via esophagojejunostomy was induced in 120 rats in metformin-treated and non-treated (control) groups. After 40 weeks, BE and EC developed in 96.7% and 63.3% of the control group, and in 66.7% and 23.3% of the metformin-treated group, respectively. Flow cytometric analysis demonstrated that the balance of M1/M2-polarized or phospho-Stat3-positive macrophages, regulatory T, cytotoxic T, natural killer (NK), NK T cells, and Th17 T cells was dynamically changed at each stage of the disease and were resolved by metformin treatment. These findings clarify the immunity in esophageal carcinogenesis and suggest that metformin could suppress this disease by improving the immunosuppressive tumor microenvironment and immune evasion.


Assuntos
Adenocarcinoma , Esôfago de Barrett , Neoplasias Esofágicas , Metformina , Adenocarcinoma/patologia , Animais , Esôfago de Barrett/patologia , Carcinogênese , Neoplasias Esofágicas/tratamento farmacológico , Neoplasias Esofágicas/patologia , Metformina/farmacologia , Metformina/uso terapêutico , Ratos , Microambiente Tumoral
16.
Int J Mol Sci ; 23(10)2022 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-35628567

RESUMO

Advanced glycation end-products (AGEs) and the receptor for AGEs (RAGE) are implicated in inflammatory reactions and vascular complications in diabetes. Signaling pathways downstream of RAGE are involved in NF-κB activation. In this study, we examined whether ethanol extracts of Saururus chinensis (Lour.) Baill. (SE) could affect RAGE signaling and vascular relaxation in streptozotocin (STZ)-induced diabetic rats. Treatment with SE inhibited AGEs-modified bovine serum albumin (AGEs-BSA)-elicited activation of NF-κB and could compete with AGEs-BSA binding to RAGE in a dose-dependent manner. Tumor necrosis factor-α (TNF-α) secretion induced by lipopolysaccharide (LPS)-a RAGE ligand-was also reduced by SE treatment in wild-type Ager+/+ mice as well as in cultured peritoneal macrophages from Ager+/+ mice but not in Ager-/- mice. SE administration significantly ameliorated diabetes-related dysregulation of acetylcholine-mediated vascular relaxation in STZ-induced diabetic rats. These results suggest that SE would inhibit RAGE signaling and would be useful for the improvement of vascular endothelial dysfunction in diabetes.


Assuntos
Diabetes Mellitus Experimental , Saururaceae , Animais , Proteínas de Transporte , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Inflamação/tratamento farmacológico , Camundongos , NF-kappa B/metabolismo , Extratos Vegetais/farmacologia , Ratos , Receptor para Produtos Finais de Glicação Avançada/genética , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Receptores Imunológicos/genética , Receptores Imunológicos/metabolismo , Saururaceae/metabolismo , Vasodilatação
17.
Int J Mol Sci ; 23(4)2022 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-35216202

RESUMO

Non-enzymatic glycation is an unavoidable reaction that occurs across biological taxa. The final products of this irreversible reaction are called advanced glycation end-products (AGEs). The endogenously formed AGEs are known to be bioactive and detrimental to human health. Additionally, exogenous food-derived AGEs are debated to contribute to the development of aging and various diseases. Receptor for AGEs (RAGE) is widely known to elicit biological reactions. The binding of RAGE to other ligands (e.g., high mobility group box 1, S100 proteins, lipopolysaccharides, and amyloid-ß) can result in pathological processes via the activation of intracellular RAGE signaling pathways, including inflammation, diabetes, aging, cancer growth, and metastasis. RAGE is now recognized as a pattern-recognition receptor. All mammals have RAGE homologs; however, other vertebrates, such as birds, amphibians, fish, and reptiles, do not have RAGE at the genomic level. This evidence from an evolutionary perspective allows us to understand why mammals require RAGE. In this review, we provide an overview of the scientific knowledge about the role of RAGE in physiological and pathological processes. In particular, we focus on (1) RAGE biology, (2) the role of RAGE in physiological and pathophysiological processes, (3) RAGE isoforms, including full-length membrane-bound RAGE (mRAGE), and the soluble forms of RAGE (sRAGE), which comprise endogenous secretory RAGE (esRAGE) and an ectodomain-shed form of RAGE, and (4) oxytocin transporters in the brain and intestine, which are important for maternal bonding and social behaviors.


Assuntos
Produtos Finais de Glicação Avançada/metabolismo , Animais , Humanos , Relações Mãe-Filho , Ocitocina/metabolismo , Isoformas de Proteínas/metabolismo , Transdução de Sinais/fisiologia
18.
J Neurochem ; 158(2): 311-327, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33871064

RESUMO

Neuroinflammation is initiated by activation of the brain's innate immune system in response to an inflammatory challenge. Insufficient control of neuroinflammation leads to enhanced or prolonged pathology in various neurological conditions including multiple sclerosis and Alzheimer's disease. Nicotinamide adenine dinucleotide (NAD+ ) plays critical roles in cellular energy metabolism and calcium homeostasis. Our previous study demonstrated that deletion of CD38, which consumes NAD+ , suppressed cuprizone-induced demyelination, neuroinflammation, and glial activation. However, it is still unknown whether CD38 directly affects neuroinflammation through regulating brain NAD+ level. In this study, we investigated the effect of CD38 deletion and inhibition and supplementation of NAD+ on lipopolysaccharide (LPS)-induced neuroinflammation in mice. Intracerebroventricular injection of LPS significantly increased CD38 expression especially in the hippocampus. Deletion of CD38 decreased LPS-induced inflammatory responses and glial activation. Pre-administration of apigenin, a flavonoid with CD38 inhibitory activity, or nicotinamide riboside (NR), an NAD+ precursor, increased NAD+ level, and significantly suppressed induction of cytokines and chemokines, glial activation and subsequent neurodegeneration after LPS administration. In cell culture, LPS-induced inflammatory responses were suppressed by treatment of primary astrocytes or microglia with apigenin, NAD+ , NR or 78c, the latter a specific CD38 inhibitor. Finally, all these compounds suppressed NF-κB signaling pathway in microglia. These results suggest that CD38-mediated neuroinflammation is linked to NAD+ consumption and that boosting NAD+ by CD38 inhibition and NR supplementation directly suppress neuroinflammation in the brain.


Assuntos
ADP-Ribosil Ciclase 1/antagonistas & inibidores , Astrócitos/efeitos dos fármacos , Astrócitos/patologia , Inflamação/induzido quimicamente , Inflamação/patologia , Lipopolissacarídeos , Glicoproteínas de Membrana/antagonistas & inibidores , Microglia/efeitos dos fármacos , Microglia/patologia , NAD/metabolismo , Niacinamida/análogos & derivados , Compostos de Piridínio/farmacologia , Animais , Apigenina/farmacologia , Quimiocinas/metabolismo , Citocinas/metabolismo , Deleção de Genes , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Injeções Intraventriculares , Lipopolissacarídeos/administração & dosagem , Ativação de Macrófagos/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos ICR , Camundongos Knockout , NAD/farmacologia , NF-kappa B/genética , Degeneração Neural , Niacinamida/farmacologia
19.
Biochem Biophys Res Commun ; 555: 74-80, 2021 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-33813279

RESUMO

The engagement of the receptor for advanced glycation end-products (receptor for AGEs, RAGE) with diverse ligands could elicit chronic vascular inflammation, such as atherosclerosis. Binding of cytoplasmic tail RAGE (ctRAGE) to diaphanous-related formin 1 (Diaph1) is known to yield RAGE intracellular signal transduction and subsequent cellular responses. However, the effectiveness of an inhibitor of the ctRAGE/Diaph1 interaction in attenuating the development of atherosclerosis is unclear. In this study, using macrophages from Ager+/+ and Ager-/- mice, we validated the effects of an inhibitor on AGEs-RAGE-induced foam cell formation. The inhibitor significantly suppressed AGEs-RAGE-evoked Rac1 activity, cell invasion, and uptake of oxidized low-density lipoprotein, as well as AGEs-induced NF-κB activation and upregulation of proinflammatory gene expression. Moreover, expression of Il-10, an anti-inflammatory gene, was restored by this antagonist. These findings suggest that the RAGE-Diaph1 inhibitor could be a potential therapeutic drug against RAGE-related diseases, such as chronic inflammation and atherosclerosis.


Assuntos
Células Espumosas/metabolismo , Macrófagos Peritoneais/patologia , Receptor para Produtos Finais de Glicação Avançada/antagonistas & inibidores , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Animais , Antígenos de Neoplasias/genética , Antígenos de Neoplasias/metabolismo , Expressão Gênica , Inflamação/genética , Inflamação/patologia , Lipoproteínas LDL/metabolismo , Macrófagos Peritoneais/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Proteínas Quinases Ativadas por Mitógeno/genética , Proteínas Quinases Ativadas por Mitógeno/metabolismo , NF-kappa B/metabolismo , Neuropeptídeos/metabolismo , Fosforilação/efeitos dos fármacos , Ratos , Receptor para Produtos Finais de Glicação Avançada/genética , Transdução de Sinais/efeitos dos fármacos , Proteínas rac1 de Ligação ao GTP/metabolismo
20.
Glycoconj J ; 38(3): 303-310, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33108607

RESUMO

The receptor for advanced glycation end-products (receptor for AGEs, RAGE) is a pattern recognition receptor. The interaction of RAGE with its ligands, such as AGEs, S100 proteins, high mobility group box-1 (HMGB1), and lipopolysaccharides (LPS), is known to play a pivotal role in the propagation of immune responses and inflammatory reactions. The ligand-RAGE interaction elicits cellular responses, for example, in myeloid and lymphoid cells, through distinct pathways by activating NF-κB and Rac1/cdc42, which lead to cytokine production, cell migration, phagocytosis, maturation, and polarization. Recently, oxytocin, a peptide hormone and neuropeptide, was identified as a novel binding molecule for the RAGE; however, it cannot compete with the interaction of RAGE with other ligands or induce RAGE intracellular signaling. The RAGE transports oxytocin from the blood into the brain and regulates brain functions. In this review, we summarize the current understanding of glycation reaction, AGEs, and the RAGE-mediated biological responses as well as the physiological role of RAGE in immunity and social behaviors, particularly, maternal bonding.


Assuntos
Produtos Finais de Glicação Avançada/metabolismo , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Regulação da Expressão Gênica/fisiologia , Humanos , Ocitocina/metabolismo , Receptor para Produtos Finais de Glicação Avançada/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA