Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Biochem Biophys Res Commun ; 625: 161-166, 2022 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-35963162

RESUMO

Activation of Gq protein-coupled receptors triggers the phospholipase C (PLC) pathway, which yields a pair of second messengers: diacylglycerol (DG) and inositol 1,4,5-trisphosphate (IP3). DG kinase (DGK) phosphorylates DG to produce phosphatidic acid (PA), which serves as another second messenger. Along with PLC-DGK pathway, PA is produced directly by the action of phospholipase D (PLD), which hydrolyzes the major membrane phospholipid: phosphatidylcholine (PC). PA is converted to DG by phosphatidic acid phosphatase, suggesting that PLD, together with DGK, is a key enzyme regulating DG and PA. PLD has been implicated in a broad range of cellular processes. However, cellular expression and subcellular localization of PLD remain elusive because of a lack of specific antibodies against PLDs. For this study, we raised specific antibodies against major mammalian PLD isoforms: PLD1 and PLD2. Immunocytochemical analysis using specific antibodies showed clearly that native PLD1 and PLD2 localize to distinct subcellular regions as dot-like structures in cultured cells. PLD1 predominantly localizes to the plasma membrane, whereas PLD2 mostly localizes within the cytoplasm. These findings suggest that PLD1 and PLD2 have different roles in the phosphoinositide signaling pathway in distinct subcellular regions.


Assuntos
Fosfolipase D , Animais , Células Cultivadas , Imuno-Histoquímica , Mamíferos/metabolismo , Ácidos Fosfatídicos/metabolismo , Fosfolipase D/metabolismo , Fosfolipases Tipo C/metabolismo
2.
J Phys Chem A ; 121(1): 277-287, 2017 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-27998060

RESUMO

The interpretation of experimental electron momentum distributions (EMDs) of ethanol, one of the simplest molecules having conformers, has confused researchers for years. High-level calculations of Dyson orbital EMDs by thermally averaging the gauche and trans conformers as well as molecular dynamical simulations failed to quantitatively reproduce the experiments for some of the outer valence orbitals. In this work, the valence shell electron binding energy spectrum and EMDs of ethanol are revisited by the high-sensitivity electron momentum spectrometer employing symmetric noncoplanar geometry at an incident energy of 1200 eV plus binding energy, together with a detailed analysis of the influence of vibrational motions on the EMDs for the two conformers employing a harmonic analytical quantum mechanical (HAQM) approach by taking into account all of the vibrational modes. The significant discrepancies between theories and experiments in previous works have now been interpreted quantitatively, indicating that the vibrational effect plays a significant role in reproducing the experimental results, not only through the low-frequency OH and CH3 torsion modes but also through other high-frequency ones. Rational explanation of experimental momentum profiles provides solid evidence that the trans conformer is slightly more stable than the gauche conformer, in accordance with thermodynamic predictions and other experiments. The case of ethanol demonstrates the significance of considering vibrational effects when performing a conformational study on flexible molecules using electron momentum spectroscopy.

3.
J Phys Chem A ; 120(34): 6855-63, 2016 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-27494262

RESUMO

Vibrational effects on electron momentum distributions (EMDs) of outer-valence orbitals of oxetane are computed with a comprehensive consideration of all vibrational modes. It is found that vibrational motions influence EMDs of all outer-valence orbitals noticeably. The agreement between theoretical and experimental momentum profiles of the first five orbitals is greatly improved when including molecular vibrations in the calculation. In particular, the large turn-up at low momentum in the experimental momentum profile of the 3b1 orbital is well interpreted by vibrational effects, indicating that, besides the low-frequency ring-puckering mode, C-H stretching motion also plays a significant role in affecting EMDs of outer-valence orbitals of oxetane. The case of oxetane exhibits the significance of checking vibrational effects when performing electron momentum spectroscopy measurements.

4.
Nature ; 465(7297): 497-501, 2010 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-20463662

RESUMO

Phosphorylated derivatives of phosphatidylinositol, collectively referred to as phosphoinositides, occur in the cytoplasmic leaflet of cellular membranes and regulate activities such as vesicle transport, cytoskeletal reorganization and signal transduction. Recent studies have indicated an important role for phosphoinositide metabolism in the aetiology of diseases such as cancer, diabetes, myopathy and inflammation. Although the biological functions of the phosphatases that regulate phosphatidylinositol-3,4,5-trisphosphate (PtdIns(3,4,5)P(3)) have been well characterized, little is known about the functions of the phosphatases regulating the closely related molecule phosphatidylinositol-3,4-bisphosphate (PtdIns(3,4)P(2)). Here we show that inositol polyphosphate phosphatase 4A (INPP4A), a PtdIns(3,4)P(2) phosphatase, is a suppressor of glutamate excitotoxicity in the central nervous system. Targeted disruption of the Inpp4a gene in mice leads to neurodegeneration in the striatum, the input nucleus of the basal ganglia that has a central role in motor and cognitive behaviours. Notably, Inpp4a(-/-) mice show severe involuntary movement disorders. In vitro, Inpp4a gene silencing via short hairpin RNA renders cultured primary striatal neurons vulnerable to cell death mediated by N-methyl-d-aspartate-type glutamate receptors (NMDARs). Mechanistically, INPP4A is found at the postsynaptic density and regulates synaptic NMDAR localization and NMDAR-mediated excitatory postsynaptic current. Thus, INPP4A protects neurons from excitotoxic cell death and thereby maintains the functional integrity of the brain. Our study demonstrates that PtdIns(3,4)P(2), PtdIns(3,4,5)P(3) and the phosphatases acting on them can have distinct regulatory roles, and provides insight into the unique aspects and physiological significance of PtdIns(3,4)P(2) metabolism. INPP4A represents, to our knowledge, the first signalling protein with a function in neurons to suppress excitotoxic cell death. The discovery of a direct link between PtdIns(3,4)P(2) metabolism and the regulation of neurodegeneration and involuntary movements may aid the development of new approaches for the treatment of neurodegenerative disorders.


Assuntos
Ácido Glutâmico/toxicidade , Neurônios/citologia , Neurônios/efeitos dos fármacos , Monoéster Fosfórico Hidrolases/metabolismo , Animais , Morte Celular/efeitos dos fármacos , Sobrevivência Celular , Células Cultivadas , Regulação para Baixo , Discinesias/genética , Discinesias/patologia , Discinesias/fisiopatologia , Ácido Glutâmico/metabolismo , Ácido Glutâmico/farmacologia , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Neostriado/efeitos dos fármacos , Neostriado/metabolismo , Neostriado/patologia , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/patologia , Doenças Neurodegenerativas/fisiopatologia , Neurônios/enzimologia , Neurônios/patologia , Monoéster Fosfórico Hidrolases/deficiência , Monoéster Fosfórico Hidrolases/genética , Receptores de N-Metil-D-Aspartato/metabolismo , Taxa de Sobrevida , Sinapses/metabolismo , Redução de Peso
5.
Proc Natl Acad Sci U S A ; 110(5): 1726-31, 2013 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-23322734

RESUMO

The metabolism of membrane phosphoinositides is critical for a variety of cellular processes. Phosphatidylinositol-3,5-bisphosphate [PtdIns(3,5)P(2)] controls multiple steps of the intracellular membrane trafficking system in both yeast and mammalian cells. However, other than in neuronal tissues, little is known about the physiological functions of PtdIns(3,5)P(2) in mammals. Here, we provide genetic evidence that type III phosphatidylinositol phosphate kinase (PIPKIII), which produces PtdIns(3,5)P(2), is essential for the functions of polarized epithelial cells. PIPKIII-null mouse embryos die by embryonic day 8.5 because of a failure of the visceral endoderm to supply the epiblast with maternal nutrients. Similarly, although intestine-specific PIPKIII-deficient mice are born, they fail to thrive and eventually die of malnutrition. At the mechanistic level, we show that PIPKIII regulates the trafficking of proteins to a cell's apical membrane domain. Importantly, mice with intestine-specific deletion of PIPKIII exhibit diarrhea and bloody stool, and their gut epithelial layers show inflammation and fibrosis, making our mutants an improved model for inflammatory bowel diseases. In summary, our data demonstrate that PIPKIII is required for the structural and functional integrity of two different types of polarized epithelial cells and suggest that PtdIns(3,5)P(2) metabolism is an unexpected and critical link between membrane trafficking in intestinal epithelial cells and the pathogenesis of inflammatory bowel disease.


Assuntos
Endoderma/metabolismo , Mucosa Intestinal/metabolismo , Fosfatidilinositol 3-Quinases/genética , Vísceras/metabolismo , Animais , Células Cultivadas , Embrião de Mamíferos/embriologia , Embrião de Mamíferos/metabolismo , Embrião de Mamíferos/ultraestrutura , Células-Tronco Embrionárias/metabolismo , Endoderma/embriologia , Endoderma/ultraestrutura , Feminino , Perfilação da Expressão Gênica , Doenças Inflamatórias Intestinais/genética , Doenças Inflamatórias Intestinais/metabolismo , Intestinos/ultraestrutura , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microscopia Confocal , Microscopia Eletrônica , Análise de Sequência com Séries de Oligonucleotídeos , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Interferência de RNA , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Tempo , Vísceras/embriologia , Vísceras/ultraestrutura
6.
Phys Rev Lett ; 114(10): 103005, 2015 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-25815930

RESUMO

We report a time-resolved (e, 2e) experiment on the deuterated acetone molecule in the S2 Rydberg state with a lifetime of 13.5 ps. The acetone S2 state was prepared by a 195 nm pump laser and probed with electron momentum spectroscopy using a 1.2 keV incident electron beam of 1 ps temporal width. In spite of the low data statistics as well as of the limited time resolution (±35 ps) due to velocity mismatch, the experimental results clearly demonstrate that electron momentum spectroscopy measurements of short-lived transient species are feasible, opening the door to time-resolved orbital imaging in momentum space.

7.
Nature ; 458(7241): 987-92, 2009 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-19363474

RESUMO

Genome-wide RNA interference (RNAi) screens have identified near-complete sets of genes involved in cellular processes. However, this methodology has not yet been used to study complex developmental processes in a tissue-specific manner. Here we report the use of a library of Drosophila strains expressing inducible hairpin RNAi constructs to study the Notch signalling pathway during external sensory organ development. We assigned putative loss-of-function phenotypes to 21.2% of the protein-coding Drosophila genes. Using secondary assays, we identified 6 new genes involved in asymmetric cell division and 23 novel genes regulating the Notch signalling pathway. By integrating our phenotypic results with protein interaction data, we constructed a genome-wide, functionally validated interaction network governing Notch signalling and asymmetric cell division. We used clustering algorithms to identify nuclear import pathways and the COP9 signallosome as Notch regulators. Our results show that complex developmental processes can be analysed on a genome-wide level and provide a unique resource for functional annotation of the Drosophila genome.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Genoma de Inseto/genética , Interferência de RNA , Receptores Notch/metabolismo , Transdução de Sinais/genética , Transporte Ativo do Núcleo Celular , Animais , Animais Geneticamente Modificados , Divisão Celular/genética , Drosophila melanogaster/citologia , Fenótipo , Controle de Qualidade
8.
Nat Cell Biol ; 9(1): 36-44, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17173042

RESUMO

Proper neutrophil migration into inflammatory sites ensures host defense without tissue damage. Phosphoinositide 3-kinase (PI(3)K) and its lipid product phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P(3)) regulate cell migration, but the role of PtdIns(3,4,5)P(3)-degrading enzymes in this process is poorly understood. Here, we show that Src homology 2 (SH2) domain-containing inositol-5-phosphatase 1 (SHIP1), a PtdIns(3,4,5)P(3) phosphatase, is a key regulator of neutrophil migration. Genetic inactivation of SHIP1 led to severe defects in neutrophil polarization and motility. In contrast, loss of the PtdIns(3,4,5)P(3) phosphatase PTEN had no impact on neutrophil chemotaxis. To study PtdIns(3,4,5)P(3) metabolism in living primary cells, we generated a novel transgenic mouse (AktPH-GFP Tg) expressing a bioprobe for PtdIns(3,4,5)P(3.) Time-lapse footage showed rapid, localized binding of AktPH-GFP to the leading edge membrane of chemotaxing ship1(+/+)AktPH-GFP Tg neutrophils, but only diffuse localization in ship1(-/-)AktPH-GFP Tg neutrophils. By directing where PtdIns(3,4,5)P(3) accumulates, SHIP1 governs the formation of the leading edge and polarization required for chemotaxis.


Assuntos
Movimento Celular , Polaridade Celular , Quimiotaxia , Fosfatos de Fosfatidilinositol/metabolismo , Monoéster Fosfórico Hidrolases/fisiologia , Animais , Células Cultivadas , Classe Ib de Fosfatidilinositol 3-Quinase , Humanos , Inositol Polifosfato 5-Fosfatases , Isoenzimas/metabolismo , Isoenzimas/fisiologia , Macrófagos/fisiologia , Camundongos , Camundongos Transgênicos , Modelos Biológicos , Neutrófilos/fisiologia , Proteína Oncogênica v-akt/genética , Proteína Oncogênica v-akt/metabolismo , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/fisiologia , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatidilinositol 3-Quinases/fisiologia , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatases , Monoéster Fosfórico Hidrolases/genética , Monoéster Fosfórico Hidrolases/metabolismo
9.
J Chem Phys ; 141(24): 244314, 2014 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-25554158

RESUMO

We report an electron momentum spectroscopy study of vibrational effects on the electron momentum distributions for the outer valence orbitals of difluoromethane (CH2F2). The symmetric noncoplanar (e,2e) experiment has been performed at an incident electron energy of 1.2 keV. Furthermore, a theoretical calculation of the electron momentum distributions of the CH2F2 molecule has been carried out with vibrational effects being involved. It is shown from comparisons between experiment and theory that it is essential to take into account influences of the CH2 asymmetric stretching and CH2 rocking vibrational modes for a proper understanding of the electron momentum distribution of the 2b1 orbital having the CH-bonding character. The results of CH2F2and additional theoretical calculations for (CH3)2O and H2CO molecules strongly suggest that vibrational effects on electron momentum distributions tend to be appreciable for non-total symmetry molecular orbitals delocalized over some equivalent CH-bond sites.

10.
J Chem Phys ; 137(11): 114301, 2012 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-22998256

RESUMO

We report an electron momentum spectroscopy study of vibrational effects on the electron momentum distributions for the outer valence orbitals of ethylene (C(2)H(4)). The symmetric noncoplanar (e,2e) experiment has been conducted at an impact energy of 1.2 keV. Furthermore, a theoretical method of calculating electron momentum distributions for polyatomic molecules has been developed with vibrational effects being involved. It is shown from comparisons between experiment and theory that taking into account effects of the CH(2) asymmetric stretching and CH(2) rocking vibrational modes of C(2)H(4) is essential for a proper understanding of the electron momentum distribution of the 1b(3g) molecular orbital.


Assuntos
Elétrons , Etilenos/química , Vibração , Teoria Quântica , Análise Espectral
11.
Cell Rep ; 40(12): 111388, 2022 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-36130497

RESUMO

Planar cell polarity (PCP) regulates the orientation of external structures. A core group of proteins that includes Frizzled forms the heart of the PCP regulatory system. Other PCP mechanisms that are independent of the core group likely exist, but their underlying mechanisms are elusive. Here, we show that tissue flow is a mechanism governing core group-independent PCP on the Drosophila notum. Loss of core group function only slightly affects bristle orientation in the adult central notum. This near-normal PCP results from tissue flow-mediated rescue of random bristle orientation during the pupal stage. Manipulation studies suggest that tissue flow can orient bristles in the opposite direction to the flow. This process is independent of the core group and implies that the apical extracellular matrix functions like a "comb" to align bristles. Our results reveal the significance of cooperation between tissue dynamics and extracellular substances in PCP establishment.


Assuntos
Polaridade Celular , Proteínas de Drosophila , Animais , Polaridade Celular/fisiologia , Drosophila/metabolismo , Proteínas de Drosophila/metabolismo , Receptores Frizzled/metabolismo , Pupa/metabolismo
12.
Nat Commun ; 13(1): 83, 2022 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-35013169

RESUMO

Phosphoinositides are a family of membrane lipids essential for many biological and pathological processes. Due to the existence of multiple phosphoinositide regioisomers and their low intracellular concentrations, profiling these lipids and linking a specific acyl variant to a change in biological state have been difficult. To enable the comprehensive analysis of phosphoinositide phosphorylation status and acyl chain identity, we develop PRMC-MS (Phosphoinositide Regioisomer Measurement by Chiral column chromatography and Mass Spectrometry). Using this method, we reveal a severe skewing in acyl chains in phosphoinositides in Pten-deficient prostate cancer tissues, extracellular mobilization of phosphoinositides upon expression of oncogenic PIK3CA, and a unique profile for exosomal phosphoinositides. Thus, our approach allows characterizing the dynamics of phosphoinositide acyl variants in intracellular and extracellular milieus.


Assuntos
Classe I de Fosfatidilinositol 3-Quinases/genética , Metaboloma , PTEN Fosfo-Hidrolase/genética , Fosfatidilinositóis/metabolismo , Neoplasias da Próstata/metabolismo , Animais , Cromatografia de Afinidade , Classe I de Fosfatidilinositol 3-Quinases/metabolismo , Fator de Crescimento Epidérmico/farmacologia , Exossomos/química , Exossomos/metabolismo , Expressão Gênica , Células HEK293 , Células HeLa , Humanos , Masculino , Espectrometria de Massas , Camundongos , Células PC-3 , PTEN Fosfo-Hidrolase/deficiência , Fosfatidilinositóis/química , Fosfatidilinositóis/classificação , Fosfatidilinositóis/isolamento & purificação , Próstata/química , Próstata/efeitos dos fármacos , Próstata/patologia , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Pirimidinas/farmacologia , Quinazolinas/farmacologia , Estereoisomerismo
13.
J Exp Med ; 201(6): 859-70, 2005 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-15767368

RESUMO

The membrane phospholipid phosphatidylinositol 4, 5-bisphosphate [PI(4,5)P(2)] is a critical signal transducer in eukaryotic cells. However, the physiological roles of the type I phosphatidylinositol phosphate kinases (PIPKIs) that synthesize PI(4,5)P(2) are largely unknown. Here, we show that the alpha isozyme of PIPKI (PIPKIalpha) negatively regulates mast cell functions and anaphylactic responses. In vitro, PIPKIalpha-deficient mast cells exhibited increased degranulation and cytokine production after Fcepsilon receptor-I cross-linking. In vivo, PIPKIalpha(-/-) mice displayed enhanced passive cutaneous and systemic anaphylaxis. Filamentous actin was diminished in PIPKIalpha(-/-) mast cells, and enhanced degranulation observed in the absence of PIPKIalpha was also seen in wild-type mast cells treated with latrunculin, a pharmacological inhibitor of actin polymerization. Moreover, the association of FcepsilonRI with lipid rafts and FcepsilonRI-mediated activation of signaling proteins was augmented in PIPKIalpha(-/-) mast cells. Thus, PIPKIalpha is a negative regulator of FcepsilonRI-mediated cellular responses and anaphylaxis, which functions by controlling the actin cytoskeleton and dynamics of FcepsilonRI signaling. Our results indicate that the different PIPKI isoforms might be functionally specialized.


Assuntos
Anafilaxia/metabolismo , Sinalização do Cálcio/fisiologia , Degranulação Celular/fisiologia , Mastócitos/fisiologia , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Actinas/metabolismo , Anafilaxia/genética , Animais , Sinalização do Cálcio/genética , Degranulação Celular/genética , Células Cultivadas , Isoenzimas/genética , Isoenzimas/metabolismo , Microdomínios da Membrana/metabolismo , Camundongos , Camundongos Knockout , Antígenos de Histocompatibilidade Menor , Fosfatidilinositol 4,5-Difosfato/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Receptores de IgE/metabolismo , Tiazóis/farmacologia
14.
Biochem Biophys Res Commun ; 413(2): 288-93, 2011 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-21893037

RESUMO

p38 mitogen-activated protein (MAP) kinase plays an important role in neurite outgrowth. However, the underlying molecular mechanism(s) remains unclear. Here, we demonstrate that phospholipase D2 (PLD2) mediates p38 signaling in neurite outgrowth. Stimulation of rat pheochromocytoma PC12 cells with nerve growth factor activated PLD2 and augmented neurite outgrowth, both of which were inhibited by pharmacological suppression of p38. Overexpression of constitutively active MAP kinase kinase 6 (MKK6-CA) activated coexpressed PLD2 in PC12 and mouse neuroblastoma N1E-115 cells. Overexpression of wild-type PLD2 in these cells strongly augmented the neurite outgrowth induced by MKK6-CA, whereas lipase-deficient PLD2 suppressed it. These findings provide evidence that PLD2 functions as a downstream molecule of p38 in the neurite outgrowth signaling cascade.


Assuntos
Neuritos/fisiologia , Fosfolipase D/biossíntese , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Animais , Linhagem Celular Tumoral , MAP Quinase Quinase 6/metabolismo , Camundongos , Fator de Crescimento Neural/farmacologia , Neuritos/enzimologia , Neurônios/efeitos dos fármacos , Neurônios/enzimologia , Células PC12 , Ratos , Proteínas Quinases p38 Ativadas por Mitógeno/antagonistas & inibidores
15.
J Chem Phys ; 134(18): 184305, 2011 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-21568504

RESUMO

We have performed extensive density functional theory (DFT) calculations, partial cross sections, dipole prepared continuum orbitals, dipole amplitudes and phase shifts, asymmetry parameters ß, and molecular frame photoelectron angular distributions, to elucidate the O1s photoionization dynamics of NO(2) molecule with emphasis on the shape resonances in the O1s ionization continuum. In the shape resonance region, the ß parameters and photoelectron angular distributions have been compared with our experimental results. Fairly good agreement between the theory and experiment has confirmed that the DFT level calculations can well describe the photoionization dynamics of the simple molecule such as NO(2). Interference due to equivalent atom photoionization is theoretically considered, and the possibility of detection of the effect in the two degenerate channels with different combinations of light polarization and photoemission direction is discussed.

16.
J Chem Phys ; 133(16): 164301, 2010 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-21033782

RESUMO

Angular distributions of N 1s photoelectrons from fixed-in-space NO(2) molecules have been measured over the energy region of shape resonance and above. A multiple-coincidence velocity-map imaging technique for observation of molecular frame photoelectron angular distributions (MF-PADs) has been extended to nonlinear molecular targets. Density functional theory calculations have also been conducted to elucidate the photoionization dynamics and shape resonance in the N 1s photoionization of NO(2). Results show that the N 1s MF-PADs exhibit strong shape variation as a function of both photoelectron kinetic energy and symmetries of final states, whereas asymmetry parameters of laboratory frame PADs show a local minimum around the shape resonance region and increase monotonically as the photon energy increases. Over the shape resonance, the spatial shape of the photoelectron wave function with b(2)-symmetry closely resembles that of 5b(2)(∗) unoccupied molecular orbital of NO(2), although the MF-PAD pattern for b(2)-symmetry does not correspond directly to the 5b(2)(∗) orbital shape. At higher kinetic energy of 90 eV, MF-PADs become less structured, but still show a significant dependence on the symmetry of final states.

17.
Cell Signal ; 18(4): 469-78, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15993039

RESUMO

The small GTPase RhoA regulates a wide spectrum of cellular functions including transformation and cytoskeletal reorganization. A large number of proteins have been identified as targets of RhoA, but their specific roles in these processes are not clear. Phospholipase D (PLD) was shown to be one such target several years ago; more recent work from our laboratory and others has demonstrated that of the two mammalian PLD isozymes, PLD1 but not PLD2 is activated by RhoA and this activation proceeds through direct binding both in vitro and in vivo. In this study, using a series of RhoA mutants, we have defined a PLD1-specific interacting site on RhoA composed of the residues Asn41, Trp58 and Asp76, using the yeast two-hybrid system, co-immunoprecipitation, and a PLD in vivo assay. The results further substantiate our previous finding that RhoA activates PLD1 through direct interaction. These mutants were then used to investigate the role of PLD1 in the cytoskeletal reorganization stimulated by RhoA signaling. Our results show that PLD1 is not required for the RhoA-mediated stress fiber and focal adhesion formation. The lack of importance of PLD1 signaling in RhoA-mediated cytoskeletal reorganization is further supported by the observation that PLD1 depletion using an shRNA approach and tetracycline-induced overexpression of the wild-type and the catalytically inactive mutant of PLD1 in stable cell lines do not alter stress fiber and focal adhesion formation.


Assuntos
Adesões Focais/metabolismo , Fosfolipase D/metabolismo , Fibras de Estresse/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo , Linhagem Celular , Células HeLa , Humanos , Imunoprecipitação , Fosfolipase D/efeitos dos fármacos , Conformação Proteica , Mapeamento de Interação de Proteínas , Estrutura Terciária de Proteína , Transdução de Sinais/fisiologia , Técnicas do Sistema de Duplo-Híbrido , Proteína rhoA de Ligação ao GTP/farmacologia
18.
Rev Sci Instrum ; 88(6): 063103, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28667962

RESUMO

We have developed multi-channel apparatus for electron-atom Compton scattering to study the momentum distribution of atoms in a molecule. It combines the features of both a spherical electron energy analyzer and a large-area position sensitive detector, thereby having an ability to cover almost completely the azimuthal angle range available for quasi-elastic electron Rutherford backscattering at an angle of 135°. Details and performance of the apparatus are reported, together with experimental results measured for Xe and CH4 at an incident electron energy of 2 keV. In particular, it is shown that the instrumental sensitivity is remarkably high, which has increased the signal count rate by nearly three orders of magnitude compared to existing setups. This technical progress would be useful for advancing atomic momentum spectroscopy studies.

19.
JCI Insight ; 2(1): e89462, 2017 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-28097232

RESUMO

Hypertrophic cardiomyopathy (HCM) is a common heart disease with a prevalence of 1 in 500 in the general population. Several mutations in genes encoding cardiac proteins have been found in HCM patients, but these changes do not predict occurrence or prognosis and the molecular mechanisms underlying HCM remain largely elusive. Here we show that cardiac expression of vacuolar protein sorting 34 (Vps34) is reduced in a subset of HCM patients. In a mouse model, muscle-specific loss of Vps34 led to HCM-like manifestations and sudden death. Vps34-deficient hearts exhibited abnormal histopathologies, including myofibrillar disarray and aggregates containing αB-crystallin (CryAB). These features result from a block in the ESCRT-mediated proteolysis that normally degrades K63-polyubiquitinated CryAB. CryAB deposition was also found in myocardial specimens from a subset of HCM patients whose hearts showed decreased Vps34. Our results identify disruption of the previously unknown Vps34-CryAB axis as a potentially novel etiology of HCM.


Assuntos
Cardiomiopatia Hipertrófica/genética , Classe III de Fosfatidilinositol 3-Quinases/genética , Miofibrilas/metabolismo , Proteostase/genética , Cadeia B de alfa-Cristalina/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Cardiomiopatia Hipertrófica/metabolismo , Cardiomiopatia Hipertrófica/prevenção & controle , Classe III de Fosfatidilinositol 3-Quinases/metabolismo , Morte Súbita Cardíaca , Feminino , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Mutação/genética , Fosforilação , Prognóstico , Proteínas Quinases S6 Ribossômicas/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Cadeia B de alfa-Cristalina/metabolismo
20.
FEBS Lett ; 579(30): 6834-8, 2005 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-16325184

RESUMO

Actin cytoskeletal reorganization and membrane trafficking are important for spine morphogenesis. Here we investigated whether the small GTPase, ADP-ribosylation factor 6 (ARF6), which regulates actin dynamics and peripheral vesicular trafficking, is involved in the regulation of spine formation. The developmental expression pattern of ARF6 in mouse hippocampus was similar to that of the post-synaptic density protein-95, and these molecules colocalized in mouse hippocampal neurons. Overexpression of a constitutively active ARF6 mutant in cultured hippocampal neurons decreased the spine density, whereas a dominant-negative ARF6 mutant increased the density. These results demonstrate a novel function for ARF6 as a key regulator of spine formation.


Assuntos
Fatores de Ribosilação do ADP/metabolismo , Espinhas Dendríticas/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Hipocampo/metabolismo , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Neurônios/metabolismo , Fator 6 de Ribosilação do ADP , Fatores de Ribosilação do ADP/genética , Animais , Western Blotting , Células Cultivadas , Hipocampo/citologia , Hipocampo/embriologia , Camundongos , Microscopia de Fluorescência , Mutação , Neurônios/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA