Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
1.
Int J Mol Sci ; 23(21)2022 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-36361749

RESUMO

Nna1/CCP1 is generally known as a causative gene for a spontaneous autosomal recessive mouse mutation, Purkinje cell degeneration (pcd). There is enough evidence that the cytosolic function of the zinc carboxypeptidase (CP) domain at the C-terminus of the Nna1 protein is associated with cell death. On the other hand, this molecule's two nuclear localization signals (NLSs) suggest some other functions exist. We generated exon 3-deficient mice (Nna1N KO), which encode a portion of the N-terminal NLS. Despite the frameshift occurring in these mice, there was an expression of the Nna1 protein lacking the N-terminal side. Surprisingly, the pcd phenotype did not occur in the Nna1N KO mouse. Behavioral analysis revealed that they were less anxious when assessed by the elevated plus maze and the light/dark box tests compared to the control. Furthermore, they showed impairments in context-dependent and sound stimulus-dependent learning. Biochemical analysis of Nna1N KO mice revealed a reduced level of the AMPA-type glutamine receptor GluA2 in the hippocampal synaptosomal fraction. In addition, the motor protein kinesin-1, which transports GluA2 to dendrites, was also decreased. These results indicate that Nna1 is also involved in emotion and memory learning, presumably through the trafficking and expression of synaptic signaling molecules, besides a known role in cell survival.


Assuntos
Células de Purkinje , D-Ala-D-Ala Carboxipeptidase Tipo Serina , Camundongos , Animais , Células de Purkinje/patologia , D-Ala-D-Ala Carboxipeptidase Tipo Serina/química , D-Ala-D-Ala Carboxipeptidase Tipo Serina/genética , D-Ala-D-Ala Carboxipeptidase Tipo Serina/metabolismo , Sobrevivência Celular/genética , Proteínas de Ligação ao GTP/metabolismo , Degeneração Neural/metabolismo , Emoções
2.
Proc Natl Acad Sci U S A ; 115(13): 3434-3439, 2018 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-29531056

RESUMO

Adequate sleep is essential for physical and mental health. We previously identified a missense mutation in the human DEC2 gene (BHLHE41) leading to the familial natural short sleep behavioral trait. DEC2 is a transcription factor regulating the circadian clock in mammals, although its role in sleep regulation has been unclear. Here we report that prepro-orexin, also known as hypocretin (Hcrt), gene expression is increased in the mouse model expressing the mutant hDEC2 transgene (hDEC2-P384R). Prepro-orexin encodes a precursor protein of a neuropeptide producing orexin A and B (hcrt1 and hcrt2), which is enriched in the hypothalamus and regulates maintenance of arousal. In cell culture, DEC2 suppressed prepro-orexin promoter-luc (ore-luc) expression through cis-acting E-box elements. The mutant DEC2 has less repressor activity than WT-DEC2, resulting in increased orexin expression. DEC2-binding affinity for the prepro-orexin gene promoter is decreased by the P384R mutation, likely due to weakened interaction with other transcription factors. In vivo, the decreased immobility time of the mutant transgenic mice is attenuated by an orexin receptor antagonist. Our results suggested that DEC2 regulates sleep/wake duration, at least in part, by modulating the neuropeptide hormone orexin.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Regulação da Expressão Gênica , Mutação , Orexinas/genética , Regiões Promotoras Genéticas , Sono/fisiologia , Animais , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Orexinas/metabolismo
3.
FASEB J ; 33(2): 2484-2497, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30265576

RESUMO

Excess energy intake causes obesity, which leads to insulin resistance and various other complications of metabolic syndrome, including diabetes, atherosclerosis, dyslipidemia, and nonalcoholic fatty liver disease. Although recent studies have depicted altered lipid metabolism as an underlying feature, the detailed mechanisms are still unclear. Here we describe a possible role in high-fat diet (HFD)-induced obesity for monoacylglycerol lipase (MGL), an enzyme that is also known to hydrolyze the endocannabinoid 2-arachidonoylglycerol in brain. MGL-deficient [MGL-knockout (KO)] mice fed a HFD gained less body weight than wild-type mice and were protected from insulin resistance and hepatic steatosis. Food intake and energy expenditure were not altered in MGL-KO mice, but blood triglyceride levels after oral olive oil gavage were suppressed, indicating a role for MGL in intestinal fat absorption. Experiments with cannabinoid receptor type 1 (CB1)/MGL double-KO mice revealed that these phenotypes may include mechanisms that are independent of CB1-receptor-mediated endocannabinoid functions. We also noted that MGL-KO mice had less preference for HFD over normal chow diet. Oral but not intraperitoneal lipid administration strongly suppressed the appetites of MGL-KO and CB1/MGL double-KO mice, but not of wild-type and CB1-KO mice. Appetite suppression was reversed by vagotomy, suggesting involvement of MGL in the gut-brain axis regulation of appetite. Our results provide mechanistic insights of MGL's role in diet-induced obesity, lipid metabolic disorder, and regulation of appetite.-Yoshida, K., Kita, Y., Tokuoka, S. M., Hamano, F., Yamazaki, M., Sakimura, K., Kano, M., Shimizu, T. Monoacylglycerol lipase deficiency affects diet-induced obesity, fat absorption, and feeding behavior in CB1 cannabinoid receptor-deficient mice.


Assuntos
Assialoglicoproteínas/deficiência , Dieta Hiperlipídica/efeitos adversos , Fígado Gorduroso/patologia , Comportamento Alimentar , Absorção Intestinal , Lectinas Tipo C/deficiência , Proteínas de Membrana/deficiência , Obesidade/patologia , Receptor CB1 de Canabinoide/fisiologia , Animais , Peso Corporal , Ingestão de Alimentos , Metabolismo Energético , Fígado Gorduroso/etiologia , Fígado Gorduroso/metabolismo , Resistência à Insulina , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Obesidade/etiologia , Obesidade/metabolismo
4.
J Neurosci ; 38(47): 10220-10235, 2018 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-30355633

RESUMO

Synaptic AMPAR expression controls the strength of excitatory synaptic transmission and plasticity. An excess of synaptic AMPARs leads to epilepsy in response to seizure-inducible stimulation. The appropriate regulation of AMPARs plays a crucial role in the maintenance of the excitatory/inhibitory synaptic balance; however, the detailed mechanisms underlying epilepsy remain unclear. Our previous studies have revealed that a key modification of AMPAR trafficking to and from postsynaptic membranes is the reversible, posttranslational S-palmitoylation at the C-termini of receptors. To clarify the role of palmitoylation-dependent regulation of AMPARs in vivo, we generated GluA1 palmitoylation-deficient (Cys811 to Ser substitution) knock-in mice. These mutant male mice showed elevated seizure susceptibility and seizure-induced neuronal activity without impairments in synaptic transmission, gross brain structure, or behavior at the basal level. Disruption of the palmitoylation site was accompanied by upregulated GluA1 phosphorylation at Ser831, but not at Ser845, in the hippocampus and increased GluA1 protein expression in the cortex. Furthermore, GluA1 palmitoylation suppressed excessive spine enlargement above a certain size after LTP. Our findings indicate that an abnormality in GluA1 palmitoylation can lead to hyperexcitability in the cerebrum, which negatively affects the maintenance of network stability, resulting in epileptic seizures.SIGNIFICANCE STATEMENT AMPARs predominantly mediate excitatory synaptic transmission. AMPARs are regulated in a posttranslational, palmitoylation-dependent manner in excitatory synapses of the mammalian brain. Reversible palmitoylation dynamically controls synaptic expression and intracellular trafficking of the receptors. Here, we generated GluA1 palmitoylation-deficient knock-in mice to clarify the role of AMPAR palmitoylation in vivo We showed that an abnormality in GluA1 palmitoylation led to hyperexcitability, resulting in epileptic seizure. This is the first identification of a specific palmitoylated protein critical for the seizure-suppressing process. Our data also provide insight into how predicted receptors such as AMPARs can effectively preserve network stability in the brain. Furthermore, these findings help to define novel key targets for developing anti-epileptic drugs.


Assuntos
Hipocampo/metabolismo , Hipocampo/fisiopatologia , Palmitatos/metabolismo , Receptores de AMPA/deficiência , Convulsões/metabolismo , Convulsões/fisiopatologia , Animais , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Técnicas de Cultura de Órgãos , Receptores de AMPA/genética , Convulsões/genética
5.
Proc Natl Acad Sci U S A ; 113(11): E1536-44, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26903630

RESUMO

In humans, the connection between sleep and mood has long been recognized, although direct molecular evidence is lacking. We identified two rare variants in the circadian clock gene PERIOD3 (PER3-P415A/H417R) in humans with familial advanced sleep phase accompanied by higher Beck Depression Inventory and seasonality scores. hPER3-P415A/H417R transgenic mice showed an altered circadian period under constant light and exhibited phase shifts of the sleep-wake cycle in a short light period (photoperiod) paradigm. Molecular characterization revealed that the rare variants destabilized PER3 and failed to stabilize PERIOD1/2 proteins, which play critical roles in circadian timing. Although hPER3-P415A/H417R-Tg mice showed a mild depression-like phenotype, Per3 knockout mice demonstrated consistent depression-like behavior, particularly when studied under a short photoperiod, supporting a possible role for PER3 in mood regulation. These findings suggest that PER3 may be a nexus for sleep and mood regulation while fine-tuning these processes to adapt to seasonal changes.


Assuntos
Afeto/fisiologia , Proteínas Circadianas Period/genética , Transtorno Afetivo Sazonal/genética , Idoso , Sequência de Aminoácidos , Animais , Relógios Circadianos/genética , Feminino , Humanos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Pessoa de Meia-Idade , Dados de Sequência Molecular , Proteínas Circadianas Period/metabolismo , Fotoperíodo , Estabilidade Proteica , Transtornos do Sono do Ritmo Circadiano/genética
6.
J Neurochem ; 147(4): 557-572, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30225910

RESUMO

Purkinje cell degeneration (pcd) was first identified in a spontaneous mouse mutant showing cerebellar ataxia. In addition to cerebellar Purkinje cells (PCs), retinal photoreceptors, mitral cells in the olfactory bulb, and a discrete subpopulation of thalamic neurons also degenerate in the mutant brains. The gene responsible for the pcd mutant is Nna1, also known as ATP/GTP binding protein 1 or cytosolic carboxypeptidase-like 1, which encodes a zinc carboxypeptidase protein. To investigate pathogenesis of the pcd mutation in detail, we generated a conditional Nna1 allele targeting the carboxypeptidase domain at C-terminus. After Cre recombination and heterozygous crossing, we generated Nna1 knockout (KO) mice and found that the Nna1 KO mice began to show cerebellar ataxia at postnatal day 20 (P20). Most PCs degenerated until 4-week-old, except lobule X. Activated microglia and astrocytes were also observed in the Nna1 KO cerebellum. In the mutant brain, the Nna1 mRNA level was dramatically reduced, suggesting that nonsense-mediated mRNA decay occurs in it. Since the Nna1 protein acts as a de-glutamatase on the C-terminus of α-tubulin and ß-tubulin, increased polyglutamylated tubulin was detected in the Nna1 KO cerebellum. In addition, the endoplasmic reticulum stress marker, C/EBP homologous protein (CHOP), was up-regulated in the mutant PCs. We report the generation of a functional Nna1 conditional allele and possible mechanisms of PC death in the Nna1 KO in the cerebellum. OPEN PRACTICES: This article has received a badge for *Open Materials* because it provided all relevant information to reproduce the study in the manuscript. The complete Open Science Disclosure form for this article can be found at the end of the article. More information about the Open Practices badges can be found at https://cos.io/our-services/open-science-badges/.


Assuntos
Proteínas de Ligação ao GTP/genética , Degeneração Neural/genética , Degeneração Neural/patologia , Células de Purkinje/patologia , D-Ala-D-Ala Carboxipeptidase Tipo Serina/genética , Alelos , Animais , Comportamento Animal , Carboxipeptidases , Ataxia Cerebelar/genética , Cerebelo/metabolismo , Cerebelo/patologia , Estresse do Retículo Endoplasmático/genética , Éxons/genética , Feminino , Deleção de Genes , Masculino , Camundongos , Camundongos Knockout , Mutação/genética , Degeneração Neural/psicologia , Fenótipo , Desempenho Psicomotor , Fator de Transcrição CHOP/genética , Fator de Transcrição CHOP/metabolismo , Tubulina (Proteína)/genética , Tubulina (Proteína)/metabolismo
7.
J Cell Sci ; 129(14): 2757-66, 2016 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-27257088

RESUMO

Nine outer doublet microtubules in axonemes of flagella and cilia are heterogeneous in structure and biochemical properties. In mammalian sperm flagella, one of the factors to generate the heterogeneity is tubulin polyglutamylation, although the importance of the heterogeneous modification is unclear. Here, we show that a tubulin polyglutamylase Ttll9 deficiency (Ttll9(-/-)) causes a unique set of phenotypes related to doublet heterogeneity. Ttll9(-/-) sperm axonemes had frequent loss of a doublet and reduced polyglutamylation. Intriguingly, the doublet loss selectively occurred at the distal region of doublet 7, and reduced polyglutamylation was observed preferentially on doublet 5. Ttll9(-/-) spermatozoa showed aberrant flagellar beating, characterized by frequent stalls after anti-hook bending. This abnormal motility could be attributed to the reduction of polyglutamylation on doublet 5, which probably occurred at a position involved in the switching of bending. These results indicate that mammalian Ttll9 plays essential roles in maintaining the normal structure and beating pattern of sperm flagella by establishing normal heterogeneous polyglutamylation patterns.


Assuntos
Glutamatos/metabolismo , Peptídeo Sintases/deficiência , Motilidade dos Espermatozoides/fisiologia , Cauda do Espermatozoide/fisiologia , Animais , Axonema/metabolismo , Axonema/ultraestrutura , Contagem de Células , Feminino , Infertilidade Masculina/patologia , Masculino , Camundongos Endogâmicos C57BL , Peptídeo Sintases/metabolismo , Cauda do Espermatozoide/ultraestrutura , Espermatozoides/metabolismo , Espermatozoides/ultraestrutura
8.
Proc Natl Acad Sci U S A ; 112(4): E371-9, 2015 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-25583485

RESUMO

Transmembrane AMPA receptor regulatory proteins (TARPs) play an essential role in excitatory synaptic transmission throughout the central nervous system (CNS) and exhibit subtype-specific effects on AMPA receptor (AMPAR) trafficking, gating, and pharmacology. The function of TARPs has largely been determined through work on canonical type I TARPs such as stargazin (TARP γ-2), absent in the ataxic stargazer mouse. Little is known about the function of atypical type II TARPs, such as TARP γ-7, which exhibits variable effects on AMPAR function. Because γ-2 and γ-7 are both strongly expressed in multiple cell types in the cerebellum, we examined the relative contribution of γ-2 and γ-7 to both synaptic transmission in the cerebellum and motor behavior by using both the stargazer mouse and a γ-7 knockout (KO) mouse. We found that the loss of γ-7 alone had little effect on climbing fiber (cf) responses in Purkinje neurons (PCs), yet the additional loss of γ-2 all but abolished cf responses. In contrast, γ-7 failed to make a significant contribution to excitatory transmission in stellate cells and granule cells. In addition, we generated a PC-specific deletion of γ-2, with and without γ-7 KO background, to examine the relative contribution of γ-2 and γ-7 to PC-dependent motor behavior. Selective deletion of γ-2 in PCs had little effect on motor behavior, yet the additional loss of γ-7 resulted in a severe disruption in motor behavior. Thus, γ-7 is capable of supporting a component of excitatory transmission in PCs, sufficient to maintain essentially normal motor behavior, in the absence of γ-2.


Assuntos
Comportamento Animal , Canais de Cálcio/metabolismo , Proteínas de Membrana/metabolismo , Atividade Motora , Células de Purkinje/metabolismo , Transmissão Sináptica , Animais , Ataxia/genética , Ataxia/metabolismo , Ataxia/patologia , Canais de Cálcio/genética , Proteínas de Membrana/genética , Camundongos , Camundongos Knockout , Células de Purkinje/patologia , Receptores de AMPA/genética , Receptores de AMPA/metabolismo
9.
J Neurosci ; 36(15): 4296-312, 2016 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-27076426

RESUMO

The number of AMPA-type glutamate receptors (AMPARs) at synapses is the major determinant of synaptic strength and varies from synapse to synapse. To clarify the underlying molecular mechanisms, the density of AMPARs, PSD-95, and transmembrane AMPAR regulatory proteins (TARPs) were compared at Schaffer collateral/commissural (SCC) synapses in the adult mouse hippocampal CA1 by quantitative immunogold electron microscopy using serial sections. We examined four types of SCC synapses: perforated and nonperforated synapses on pyramidal cells and axodendritic synapses on parvalbumin-positive (PV synapse) and pravalbumin-negative interneurons (non-PV synapse). SCC synapses were categorized into those expressing high-density (perforated and PV synapses) or low-density (nonperforated and non-PV synapses) AMPARs. Although the density of PSD-95 labeling was fairly constant, the density and composition of TARP isoforms was highly variable depending on the synapse type. Of the three TARPs expressed in hippocampal neurons, the disparity in TARP γ-2 labeling was closely related to that of AMPAR labeling. Importantly, AMPAR density was significantly reduced at perforated and PV synapses in TARP γ-2-knock-out (KO) mice, resulting in a virtual loss of AMPAR disparity among SCC synapses. In comparison, TARP γ-8 was the only TARP expressed at nonperforated synapses, where AMPAR labeling further decreased to a background level in TARP γ-8-KO mice. These results show that synaptic inclusion of TARP γ-2 potently increases AMPAR expression and transforms low-density synapses into high-density ones, whereas TARP γ-8 is essential for low-density or basal expression of AMPARs at nonperforated synapses. Therefore, these TARPs are critically involved in AMPAR density control at SCC synapses. SIGNIFICANCE STATEMENT: Although converging evidence implicates the importance of transmembrane AMPA-type glutamate receptor (AMPAR) regulatory proteins (TARPs) in AMPAR stabilization during basal transmission and synaptic plasticity, how they control large disparities in AMPAR numbers or densities across central synapses remains largely unknown. We compared the density of AMPARs with that of TARPs among four types of Schaffer collateral/commissural (SCC) hippocampal synapses in wild-type and TARP-knock-out mice. We show that the density of AMPARs correlates with that of TARP γ-2 across SCC synapses and its high expression is linked to high-density AMPAR expression at perforated type of pyramidal cell synapses and synapses on parvalbumin-positive interneurons. In comparison, TARP γ-8 is the only TARP expressed at nonperforated type of pyramidal cell synapses, playing an essential role in low-density or basal AMPAR expression.


Assuntos
Região CA1 Hipocampal/fisiologia , Canais de Cálcio/fisiologia , Receptores de AMPA/metabolismo , Sinapses/fisiologia , Animais , Canais de Cálcio/genética , Proteína 4 Homóloga a Disks-Large , Potenciais Pós-Sinápticos Excitadores , Guanilato Quinases/biossíntese , Guanilato Quinases/genética , Masculino , Proteínas de Membrana/biossíntese , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células Piramidais/fisiologia , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Transmissão Sináptica
10.
J Neurochem ; 142(5): 686-699, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28628214

RESUMO

It has been established that voltage-gated proton channels (VSOP/Hv1), encoded by Hvcn1, support reactive oxygen species (ROS) production in phagocytic activities of neutrophils (El Chemaly et al. ) and antibody production in B lymphocytes (Capasso et al. ). VSOP/Hv1 is a potential therapeutic target for brain ischemia, since Hvcn1 deficiency reduces microglial ROS production and protects brain from neuronal damage (Wu et al. ). In the present study, we report that VSOP/Hv1 has paradoxical suppressive role in ROS production in microglia. Extracellular ROS production was lower in neutrophils of Hvcn1-/- mice than WT mice as reported. In contrast, it was drastically enhanced in isolated Hvcn1-/- microglia as compared with cells from WT mice. Actin dynamics was altered in Hvcn1-/- microglia and intracellular distribution of cytosolic NADPH oxidase subunit, p67, was changed. When expression levels of oxidative stress responsive antioxidant genes were compared between WT and Hvcn1-/- in cerebral cortex at different ages of animals, they were slightly decreased in Hvcn1-/- mice at younger stage (1 day, 5 days, 3 weeks old), but drastically increased at aged stage (6 months old), suggesting that the regulation of microglial ROS production by VSOP/Hv1 is age-dependent. We also performed brain ischemic stroke experiments and found that the neuroprotective effect of VSOP/Hv1deficiency on infarct volume depended on the age of animals. Taken together, regulation of ROS production by VSOP/Hv1 is more complex than previously thought and significance of VSOP/Hv1 in microglial ROS production depends on age.


Assuntos
Isquemia Encefálica/metabolismo , Encéfalo/metabolismo , Canais Iônicos/fisiologia , Microglia/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Animais , Isquemia Encefálica/prevenção & controle , Células Cultivadas , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos ICR , Camundongos Knockout , Camundongos Transgênicos , Neutrófilos/metabolismo , Estresse Oxidativo/fisiologia
11.
J Neurosci ; 35(2): 843-52, 2015 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-25589776

RESUMO

Simple and regular anatomical structure is a hallmark of the cerebellar cortex. Parasagittally arrayed alternate expression of aldolase C/zebrin II in Purkinje cells (PCs) has been extensively studied, but surprisingly little is known about its functional significance. Here we found a precise structure-function relationship between aldolase C expression and synchrony of PC complex spike activities that reflect climbing fiber inputs to PCs. We performed two-photon calcium imaging in transgenic mice in which aldolase C compartments can be visualized in vivo, and identified highly synchronous complex spike activities among aldolase C-positive or aldolase C-negative PCs, but not across these populations. The boundary of aldolase C compartments corresponded to that of complex spike synchrony at single-cell resolution. Sensory stimulation evoked aldolase C compartment-specific complex spike responses and synchrony. This result further revealed the structure-function segregation. In awake animals, complex spike synchrony both within and between PC populations across the aldolase C boundary were enhanced in response to sensory stimuli, in a way that two functionally distinct PC ensembles are coactivated. These results suggest that PC populations characterized by aldolase C expression precisely represent distinct functional units of the cerebellar cortex, and these functional units can cooperate to process sensory information in awake animals.


Assuntos
Sinalização do Cálcio , Frutose-Bifosfato Aldolase/metabolismo , Células de Purkinje/metabolismo , Animais , Frutose-Bifosfato Aldolase/genética , Camundongos , Camundongos Endogâmicos C57BL , Especificidade de Órgãos
12.
J Cell Sci ; 127(Pt 24): 5204-17, 2014 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-25380823

RESUMO

The ubiquitin-proteasome and autophagy-lysosome pathways are the two major routes of protein and organelle clearance. The role of the proteasome pathway in mammalian muscle has not been examined in vivo. In this study, we report that the muscle-specific deletion of a crucial proteasomal gene, Rpt3 (also known as Psmc4), resulted in profound muscle growth defects and a decrease in force production in mice. Specifically, developing muscles in conditional Rpt3-knockout animals showed dysregulated proteasomal activity. The autophagy pathway was upregulated, but the process of autophagosome formation was impaired. A microscopic analysis revealed the accumulation of basophilic inclusions and disorganization of the sarcomeres in young adult mice. Our results suggest that appropriate proteasomal activity is important for muscle growth and for maintaining myofiber integrity in collaboration with autophagy pathways. The deletion of a component of the proteasome complex contributed to myofiber degeneration and weakness in muscle disorders that are characterized by the accumulation of abnormal inclusions.


Assuntos
Desenvolvimento Muscular , Músculo Esquelético/crescimento & desenvolvimento , Músculo Esquelético/patologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Agregados Proteicos , Animais , Autofagia/efeitos dos fármacos , Fenômenos Biomecânicos/efeitos dos fármacos , Proteínas de Ligação a DNA/deficiência , Proteínas de Ligação a DNA/metabolismo , Distrofina/metabolismo , Imuno-Histoquímica , Camundongos Knockout , Desenvolvimento Muscular/efeitos dos fármacos , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/enzimologia , Fenótipo , Inibidores de Proteassoma/farmacologia , Agregados Proteicos/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Transcrição Gênica/efeitos dos fármacos , Ubiquitina/metabolismo
13.
Eur J Immunol ; 45(5): 1512-23, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25652366

RESUMO

Ras GTPase-activating proteins negatively regulate the Ras/Erk signaling pathway, thereby playing crucial roles in the proliferation, function, and development of various types of cells. In this study, we identified a novel Ras GTPase-activating proteins protein, RASAL3, which is predominantly expressed in cells of hematopoietic lineages, including NKT, B, and T cells. We established systemic RASAL3-deficient mice, and the mice exhibited a severe decrease in NKT cells in the liver at 8 weeks of age. The treatment of RASAL3-deficient mice with α-GalCer, a specific agonist for NKT cells, induced liver damage, but the level was less severe than that in RASAL3-competent mice, and the attenuated liver damage was accompanied by a reduced production of interleukin-4 and interferon-γ from NKT cells. RASAL3-deficient NKT cells treated with α-GalCer in vitro presented augmented Erk phosphorylation, suggesting that there is dysregulated Ras signaling in the NKT cells of RASAL3-deficient mice. Taken together, these results suggest that RASAL3 plays an important role in the expansion and functions of NKT cells in the liver by negatively regulating Ras/Erk signaling, and might be a therapeutic target for NKT-associated diseases.


Assuntos
Células T Matadoras Naturais/imunologia , Proteínas Ativadoras de ras GTPase/imunologia , Animais , Linfócitos B/imunologia , Linfócitos B/metabolismo , Linhagem Celular Tumoral , Galactosilceramidas/administração & dosagem , Galactosilceramidas/imunologia , Técnicas de Silenciamento de Genes , Humanos , Interferon gama/biossíntese , Interleucina-4/biossíntese , Células Jurkat , Fígado/imunologia , Fígado/lesões , Fígado/metabolismo , Antígeno-1 Associado à Função Linfocitária/metabolismo , Sistema de Sinalização das MAP Quinases/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células T Matadoras Naturais/citologia , Células T Matadoras Naturais/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores CXCR/metabolismo , Receptores CXCR6 , Transdução de Sinais/imunologia , Linfócitos T/imunologia , Linfócitos T/metabolismo , Proteínas Ativadoras de ras GTPase/deficiência , Proteínas Ativadoras de ras GTPase/genética
14.
Artigo em Inglês | MEDLINE | ID: mdl-27477458

RESUMO

Phospholipase D4 (PLD4) is expressed in activated microglia that transiently appear in white matter during postnatal brain development. Previous knockdown experiments using cultured microglia showed PLD4 involvement in phagocytosis and proliferation. To elucidate the role of PLD4 in vivo, PLD4-deficient mice were generated and the cerebella were examined at postnatal day 5 (P5) and P7, when PLD4 expression is highest in microglia. Wild type microglia showed strong immunoreactivity for microglial marker CD68 at P5, whereas CD68 signals were weak in PLD4-deficient microglia, suggesting that loss of PLD4 affects microglial activation. At P5 and P7, immunostaining for anti-myelin basic protein (MBP) antibody indicated a mild but significant delay in myelination in PLD4-deficient cerebellum. Similar change was also observed in the corpus callosum at P7. However, this difference was not apparent at P10, suggesting that microglial PLD4-deficiency primarily influences the early myelination stage. Thus, microglia may have a transient role in myelination via a PLD4-related mechanism during development.


Assuntos
Encéfalo/embriologia , Glicoproteínas de Membrana/deficiência , Microglia/enzimologia , Bainha de Mielina/metabolismo , Animais , Antígenos CD/metabolismo , Antígenos de Diferenciação Mielomonocítica/metabolismo , Astrócitos/metabolismo , Cerebelo/citologia , Corpo Caloso/metabolismo , Exonucleases , Glicoproteínas de Membrana/metabolismo , Camundongos , Neurônios/metabolismo , Células de Purkinje/metabolismo
15.
Eur J Neurosci ; 42(9): 2678-89, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26342201

RESUMO

Arginine vasopressin (AVP), a major neuropeptide in the suprachiasmatic nucleus (SCN), is postulated to mediate the output of the circadian oscillation. Mice carrying a reporter gene of AVP transcription (AVP(ELuc)) were produced by knocking-in a cDNA of Emerald-luciferase (ELuc) in the translational initiation site. Homozygous mice did not survive beyond postnatal day 7. Using the heterozygous (AVP(ELuc/+)) mice, a bioluminescence reporter system was developed that enabled to monitor AVP transcription through AVP-ELuc measurement in real time for more than 10 cycles in the cultured brain slice. AVP(ELuc/+) mice showed circadian behaviour rhythms and light responsiveness indistinguishable from those of the wild-type. Robust circadian rhythms in AVP-ELuc were detected in the cultured SCN slice at a single cell as well as tissue levels. The circadian rhythm of the whole SCN slice was stable, with the peak at the mid-light phase of a light-dark cycle, while that of a single cell was more variable. By comparison, rhythmicity in the paraventricular nucleus and supraoptic nucleus in the hypothalamus was unstable and damped rapidly. Spatiotemporal profiles of AVP expression at the pixel level revealed significant circadian rhythms in the entire area of AVP-positive cells in the SCN, and at least two clusters that showed different circadian oscillations. Contour analysis of bioluminescence intensity in a cell-like region demonstrated the radiation area was almost identical to the cell size. This newly developed reporter system for AVP gene expression is a useful tool for the study of circadian rhythms.


Assuntos
Arginina Vasopressina/genética , Ritmo Circadiano/genética , Neurônios/metabolismo , Núcleo Supraquiasmático/metabolismo , Transcrição Gênica , Animais , Células Cultivadas , Feminino , Técnicas de Introdução de Genes , Genes Reporter , Medições Luminescentes , Masculino , Camundongos , Camundongos Transgênicos
16.
Proc Natl Acad Sci U S A ; 109(30): 12195-200, 2012 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-22783023

RESUMO

The endocannabinoid 2-arachidonoylglycerol (2-AG) mediates retrograde synaptic suppression. Although the mechanisms of 2-AG production are well characterized, how 2-AG is degraded is less clearly understood. Here we found that expression of the 2-AG hydrolyzing enzyme monoacylglycerol lipase (MGL) was highly heterogeneous in the cerebellum, being rich within parallel fiber (PF) terminals, weak in Bergman glia (BG), and absent in other synaptic terminals. Despite this highly selective MGL expression pattern, 2-AG-mediated retrograde suppression was significantly prolonged at not only PF-Purkinje cell (PC) synapses but also climbing fiber-PC synapses in granule cell-specific MGL knockout (MGL-KO) mice whose cerebellar MGL expression was confined to the BG. Virus-mediated expression of MGL into the BG of global MGL-KO mice significantly shortened 2-AG-mediated retrograde suppression at PF-PC synapses. Furthermore, contribution of MGL to termination of 2-AG signaling depended on the distance from MGL-rich PFs to inhibitory synaptic terminals. Thus, 2-AG is degraded in a synapse-type independent manner by MGL present in PFs and the BG. The results of the present study strongly suggest that MGL regulates 2-AG signaling rather broadly within a certain range of neural tissue, although MGL expression is heterogeneous and limited to a subset of nerve terminals and astrocytes.


Assuntos
Ácidos Araquidônicos/metabolismo , Moduladores de Receptores de Canabinoides/metabolismo , Endocanabinoides , Glicerídeos/metabolismo , Monoacilglicerol Lipases/metabolismo , Proteólise , Transdução de Sinais/fisiologia , Transmissão Sináptica/fisiologia , Análise de Variância , Animais , Cálcio/metabolismo , Clonagem Molecular , Primers do DNA/genética , Potenciais Pós-Sinápticos Excitadores/fisiologia , Imuno-Histoquímica , Camundongos , Camundongos Knockout , Monoacilglicerol Lipases/genética , Neuroglia/metabolismo , Reação em Cadeia da Polimerase , Células de Purkinje/metabolismo
17.
J Neurosci ; 33(8): 3588-601, 2013 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-23426686

RESUMO

Endocannabinoids are known to mediate retrograde suppression of synaptic transmission, modulate synaptic plasticity, and influence learning and memory. The 2-arachidonoylglycerol (2-AG) produced by diacylglycerol lipase α (DGLα) is regarded as the major endocannabinoid that causes retrograde synaptic suppression. To determine how 2-AG signaling influences learning and memory, we subjected DGLα knock-out mice to two learning tasks. We tested the mice using habituation and odor-guided transverse patterning tasks that are known to involve the dentate gyrus and the CA1, respectively, of the hippocampus. We found that DGLα knock-out mice showed significantly faster habituation to an odor and a new environment than wild-type littermates with normal performance in the transverse patterning task. In freely moving animals, long-term potentiation (LTP) induced by theta burst stimulation was significantly larger at perforant path-granule cell synapses in the dentate gyrus of DGLα knock-out mice. Importantly, prior induction of synaptic potentiation at this synapse caused a significant retardation of habituation in DGLα knock-out but not in wild-type littermates. The excitability of granule cells became higher in DGLα knock-out mice after they generated action potentials. Since no differences were found in intrinsic membrane properties and responses to odor stimuli in granule cells, the elevated excitability is considered to result from enhanced activity of an excitatory recurrent network composed of granule cells and mossy cells. These results suggest that retrograde 2-AG signaling negatively regulates habituation by suppressing excitatory recurrent network activity and reducing LTP in the dentate gyrus.


Assuntos
Ácidos Araquidônicos/fisiologia , Giro Denteado/fisiologia , Endocanabinoides/fisiologia , Potenciais Pós-Sinápticos Excitadores/fisiologia , Glicerídeos/fisiologia , Habituação Psicofisiológica/fisiologia , Potenciação de Longa Duração/fisiologia , Rede Nervosa/fisiologia , Inibição Neural/fisiologia , Animais , Aprendizagem por Associação/fisiologia , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Tempo de Reação/fisiologia , Prevenção Secundária
18.
J Biol Chem ; 288(48): 34906-19, 2013 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-24136198

RESUMO

Syntaxin-1A is a t-SNARE that is involved in vesicle docking and vesicle fusion; it is important in presynaptic exocytosis in neurons because it interacts with many regulatory proteins. Previously, we found the following: 1) that autophosphorylated Ca(2+)/calmodulin-dependent protein kinase II (CaMKII), an important modulator of neural plasticity, interacts with syntaxin-1A to regulate exocytosis, and 2) that a syntaxin missense mutation (R151G) attenuated this interaction. To determine more precisely the physiological importance of this interaction between CaMKII and syntaxin, we generated mice with a knock-in (KI) syntaxin-1A (R151G) mutation. Complexin is a molecular clamp involved in exocytosis, and in the KI mice, recruitment of complexin to the SNARE complex was reduced because of an abnormal CaMKII/syntaxin interaction. Nevertheless, SNARE complex formation was not inhibited, and consequently, basal neurotransmission was normal. However, the KI mice did exhibit more enhanced presynaptic plasticity than wild-type littermates; this enhanced plasticity could be associated with synaptic response than did wild-type littermates; this pronounced response included several behavioral abnormalities. Notably, the R151G phenotypes were generally similar to previously reported CaMKII mutant phenotypes. Additionally, synaptic recycling in these KI mice was delayed, and the density of synaptic vesicles was reduced. Taken together, our results indicated that this single point mutation in syntaxin-1A causes abnormal regulation of neuronal plasticity and vesicle recycling and that the affected syntaxin-1A/CaMKII interaction is essential for normal brain and synaptic functions in vivo.


Assuntos
Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , Exocitose/genética , Plasticidade Neuronal/fisiologia , Mutação Puntual/genética , Sintaxina 1/genética , Animais , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/fisiologia , Técnicas de Introdução de Genes , Hipocampo/metabolismo , Proteínas de Membrana/genética , Camundongos , Plasticidade Neuronal/genética , Neurônios/metabolismo , Neurônios/fisiologia , Mapas de Interação de Proteínas , Transmissão Sináptica/genética , Vesículas Sinápticas/genética , Vesículas Sinápticas/metabolismo , Sintaxina 1/metabolismo
19.
J Neurochem ; 131(1): 53-64, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24802945

RESUMO

Previous studies have implicated the role of Purkinje cells in motor learning and the underlying mechanisms have also been identified in great detail during the last decades. Here we report that cyclin-dependent kinase 5 (Cdk5)/p35 in Purkinje cell also contributes to synaptic plasticity. We previously showed that p35(-/-) (p35 KO) mice exhibited a subtle abnormality in brain structure and impaired spatial learning and memory. Further behavioral analysis showed that p35 KO mice had a motor coordination defect, suggesting that p35, one of the activators of Cdk5, together with Cdk5 may play an important role in cerebellar motor learning. Therefore, we created Purkinje cell-specific conditional Cdk5/p35 knockout (L7-p35 cKO) mice, analyzed the cerebellar histology and Purkinje cell morphology of these mice, evaluated their performance with balance beam and rota-rod test, and performed electrophysiological recordings to assess long-term synaptic plasticity. Our analyses showed that Purkinje cell-specific deletion of Cdk5/p35 resulted in no changes in Purkinje cell morphology but severely impaired motor coordination. Furthermore, disrupted cerebellar long-term synaptic plasticity was observed at the parallel fiber-Purkinje cell synapse in L7-p35 cKO mice. These results indicate that Cdk5/p35 is required for motor learning and involved in long-term synaptic plasticity.


Assuntos
Cerebelo/metabolismo , Plasticidade Neuronal/fisiologia , Fosfotransferases/deficiência , Desempenho Psicomotor/fisiologia , Animais , Cerebelo/patologia , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Fosfotransferases/genética
20.
Proc Natl Acad Sci U S A ; 108(36): 14885-9, 2011 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-21873234

RESUMO

CD8 T cells play a critical role in protection against viral infections. During effector differentiation, CD8 T cells dramatically change chromatin structure and cellular metabolism, but how energy production increases in response to these epigenetic changes is unknown. We found that loss of basic leucine zipper transcription factor, ATF-like (BATF) inhibited effector CD8 T-cell differentiation. At the late effector stage, BATF was induced by IL-12 and required for IL-12-mediated histone acetylation and survival of effector T cells. BATF, together with c-Jun, transcriptionally inhibited expression of the nicotinamide adenine dinucleotide (NAD(+))-dependent deacetylase Sirt1, resulting in increased histone acetylation of the T-bet locus and increased cellular NAD(+), which increased ATP production. In turn, high levels of T-bet expression and ATP production promoted effector differentiation and cell survival. These results suggest that BATF promotes effector CD8 T-cell differentiation by regulating both epigenetic remodeling and energy metabolism through Sirt1 expression.


Assuntos
Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Epigênese Genética/fisiologia , Regulação Enzimológica da Expressão Gênica/fisiologia , Loci Gênicos/fisiologia , Sirtuína 1/biossíntese , Acetilação , Trifosfato de Adenosina/genética , Trifosfato de Adenosina/metabolismo , Animais , Fatores de Transcrição de Zíper de Leucina Básica/genética , Linfócitos T CD8-Positivos/citologia , Histonas/genética , Histonas/metabolismo , Interleucina-12/genética , Interleucina-12/metabolismo , Camundongos , Camundongos Knockout , NAD/genética , NAD/metabolismo , Multimerização Proteica/fisiologia , Sirtuína 1/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA