Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Cogn Neurosci ; 35(11): 1806-1822, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37677065

RESUMO

Limbic and motor integration is enabled by a mesial temporal to motor cortex network. Parkinson disease (PD) is characterized by a loss of dorsal striatal dopamine but relative preservation of mesolimbic dopamine early in disease, along with changes to motor action control. Here, we studied 47 patients with PD using the Simon conflict task and [18F]fallypride PET imaging. Additionally, a cohort of 16 patients participated in a single-blinded dextroamphetamine (dAMPH) study. Task performance was evaluated using the diffusion model for conflict tasks, which allows for an assessment of interpretable action control processes. First, a voxel-wise examination disclosed a negative relationship, such that longer non-decision time is associated with reduced D2-like binding potential (BPND) in the bilateral putamen, left globus pallidus, and right insula. Second, an ROI analysis revealed a positive relationship, such that shorter non-decision time is associated with reduced D2-like BPND in the amygdala and ventromedial OFC. The difference in non-decision time between off-dAMPH and on-dAMPH trials was positively associated with D2-like BPND in the globus pallidus. These findings support the idea that dysfunction of the traditional striatal-motor loop underlies action control deficits but also suggest that a compensatory parallel limbic-motor loop regulates motor output.


Assuntos
Dopamina , Doença de Parkinson , Humanos , Corpo Estriado/metabolismo , Dopamina/metabolismo , Doença de Parkinson/diagnóstico por imagem , Tomografia por Emissão de Pósitrons/métodos , Receptores de Dopamina D2/metabolismo
2.
J Chem Inf Model ; 62(22): 5841-5848, 2022 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-36286319

RESUMO

Data-driven modeling has emerged as a new paradigm for biocatalyst design and discovery. Biocatalytic databases that integrate enzyme structure and function data are in urgent need. Here we describe IntEnzyDB as an integrated structure-kinetics database for facile statistical modeling and machine learning. IntEnzyDB employs a relational database architecture with a flattened data structure, which allows rapid data operation. This architecture also makes it easy for IntEnzyDB to incorporate more types of enzyme function data. IntEnzyDB contains enzyme kinetics and structure data from six enzyme commission classes. Using 1050 enzyme structure-kinetics pairs, we investigated the efficiency-perturbing propensities of mutations that are close or distal to the active site. The statistical results show that efficiency-enhancing mutations are globally encoded and that deleterious mutations are much more likely to occur in close mutations than in distal mutations. Finally, we describe a web interface that allows public users to access enzymology data stored in IntEnzyDB. IntEnzyDB will provide a computational facility for data-driven modeling in biocatalysis and molecular evolution.


Assuntos
Cinética , Biocatálise , Bases de Dados Factuais , Domínio Catalítico
3.
J Chem Theory Comput ; 19(21): 7459-7477, 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-37828731

RESUMO

Protein engineering holds immense promise in shaping the future of biomedicine and biotechnology. This Review focuses on our ongoing development of Mutexa, a computational ecosystem designed to enable "intelligent protein engineering". In this vision, researchers will seamlessly acquire sequences of protein variants with desired functions as biocatalysts, therapeutic peptides, and diagnostic proteins through a finely-tuned computational machine, akin to Amazon Alexa's role as a versatile virtual assistant. The technical foundation of Mutexa has been established through the development of a database that combines and relates enzyme structures and their respective functions (e.g., IntEnzyDB), workflow software packages that enable high-throughput protein modeling (e.g., EnzyHTP and LassoHTP), and scoring functions that map the sequence-structure-function relationship of proteins (e.g., EnzyKR and DeepLasso). We will showcase the applications of these tools in benchmarking the convergence conditions of enzyme functional descriptors across mutants, investigating protein electrostatics and cavity distributions in SAM-dependent methyltransferases, and understanding the role of nonelectrostatic dynamic effects in enzyme catalysis. Finally, we will conclude by addressing the future steps and fundamental challenges in our endeavor to develop new Mutexa applications that assist the identification of beneficial mutants in protein engineering.


Assuntos
Engenharia de Proteínas , Proteínas
4.
J Phys Chem B ; 126(13): 2486-2495, 2022 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-35324218

RESUMO

Molecular dynamics simulations have been extensively employed to reveal the roles of protein dynamics in mediating enzyme catalysis. However, simulation-derived predictive descriptors that inform the impacts of mutations on catalytic turnover numbers remain largely unexplored. In this work, we report the identification of molecular modeling-derived descriptors to predict mutation effect on the turnover number of lactonase SsoPox with both native and non-native substrates. The study consists of 10 enzyme-substrate complexes resulting from a combination of five enzyme variants with two substrates. For each complex, we derived 15 descriptors from molecular dynamics simulations and applied principal component analysis to rank the predictive capability of the descriptors. A top-ranked descriptor was identified, which is the solvent-accessible surface area (SASA) ratio of the substrate to the active site pocket. A uniform volcano-shaped plot was observed in the distribution of experimental activation free energy against the SASA ratio. To achieve efficient lactonase hydrolysis, a non-native substrate-bound enzyme variant needs to involve a similar range of the SASA ratio to the native substrate-bound wild-type enzyme. The descriptor reflects how well the enzyme active site pocket accommodates a substrate for reaction, which has the potential of guiding optimization of enzyme reaction turnover for non-native chemical transformations.


Assuntos
Domínio Catalítico , Simulação de Dinâmica Molecular , Mutação , Catálise , Domínio Catalítico/genética , Mutação/genética , Mutação/fisiologia , Especificidade por Substrato
5.
J Phys Chem B ; 125(38): 10682-10691, 2021 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-34524819

RESUMO

Hydrolases are a critical component for modern chemical, pharmaceutical, and environmental sciences. Identifying mutations that enhance catalytic efficiency presents a roadblock to design and to discover new hydrolases for broad academic and industrial uses. Here, we report the statistical profiling for rate-perturbing mutant hydrolases with a single amino acid substitution. We constructed an integrated structure-kinetics database for hydrolases, IntEnzyDB, which contains 3907 kcats, 4175 KMs, and 2715 Protein Data Bank IDs. IntEnzyDB adopts a relational architecture with a flattened data structure, enabling facile and efficient access to clean and tabulated data for machine learning uses. We conducted statistical analyses on how single amino acids mutations influence the turnover number (i.e., kcat) and efficiency (i.e., kcat/KM), with a particular emphasis on profiling the features for rate-enhancing mutations. The results show that mutation to bulky nonpolar residues with a hydrocarbon chain involves a higher likelihood for rate acceleration than to other types of residues. Linear regression models reveal geometric descriptors of substrate and mutation residues that mediate rate-perturbing outcomes for hydrolases with bulky nonpolar mutations. On the basis of the analyses of the structure-kinetics relationship, we observe that the propensity for rate enhancement is independent of protein sizes. In addition, we observe that distal mutations (i.e., >10 Å from the active site) in hydrolases are significantly more prone to induce efficiency neutrality and avoid efficiency deletion but involve similar propensity for rate enhancement. The studies reveal the statistical features for identifying rate-enhancing mutations in hydrolases, which will potentially guide hydrolase discovery in biocatalysis.


Assuntos
Aminoácidos , Hidrolases , Substituição de Aminoácidos , Hidrolases/genética , Hidrolases/metabolismo , Cinética , Mutagênese Sítio-Dirigida , Mutação , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA