RESUMO
Silicon solar cells are a mainstay of commercialized photovoltaics, and further improving the power conversion efficiency of large-area and flexible cells remains an important research objective1,2. Here we report a combined approach to improving the power conversion efficiency of silicon heterojunction solar cells, while at the same time rendering them flexible. We use low-damage continuous-plasma chemical vapour deposition to prevent epitaxy, self-restoring nanocrystalline sowing and vertical growth to develop doped contacts, and contact-free laser transfer printing to deposit low-shading grid lines. High-performance cells of various thicknesses (55-130 µm) are fabricated, with certified efficiencies of 26.06% (57 µm), 26.19% (74 µm), 26.50% (84 µm), 26.56% (106 µm) and 26.81% (125 µm). The wafer thinning not only lowers the weight and cost, but also facilitates the charge migration and separation. It is found that the 57-µm flexible and thin solar cell shows the highest power-to-weight ratio (1.9 W g-1) and open-circuit voltage (761 mV) compared to the thick ones. All of the solar cells characterized have an area of 274.4 cm2, and the cell components ensure reliability in potential-induced degradation and light-induced degradation ageing tests. This technological progress provides a practical basis for the commercialization of flexible, lightweight, low-cost and highly efficient solar cells, and the ability to bend or roll up crystalline silicon solar cells for travel is anticipated.
RESUMO
A key challenge in aerosol pollution studies and climate change assessment is to understand how atmospheric aerosol particles are initially formed1,2. Although new particle formation (NPF) mechanisms have been described at specific sites3-6, in most regions, such mechanisms remain uncertain to a large extent because of the limited ability of atmospheric models to simulate critical NPF processes1,7. Here we synthesize molecular-level experiments to develop comprehensive representations of 11 NPF mechanisms and the complex chemical transformation of precursor gases in a fully coupled global climate model. Combined simulations and observations show that the dominant NPF mechanisms are distinct worldwide and vary with region and altitude. Previously neglected or underrepresented mechanisms involving organics, amines, iodine oxoacids and HNO3 probably dominate NPF in most regions with high concentrations of aerosols or large aerosol radiative forcing; such regions include oceanic and human-polluted continental boundary layers, as well as the upper troposphere over rainforests and Asian monsoon regions. These underrepresented mechanisms also play notable roles in other areas, such as the upper troposphere of the Pacific and Atlantic oceans. Accordingly, NPF accounts for different fractions (10-80%) of the nuclei on which cloud forms at 0.5% supersaturation over various regions in the lower troposphere. The comprehensive simulation of global NPF mechanisms can help improve estimation and source attribution of the climate effects of aerosols.
RESUMO
New particle formation (NPF) substantially affects the global radiation balance and climate. Iodic acid (IA) is a key marine NPF driver that recently has also been detected inland. However, its impact on continental particle nucleation remains unclear. Here, we provide molecular-level evidence that IA greatly facilitates clustering of two typical land-based nucleating precursors: dimethylamine (DMA) and sulfuric acid (SA), thereby enhancing particle nucleation. Incorporating this mechanism into an atmospheric chemical transport model, we show that IA-induced enhancement could realize an increase of over 20% in the SA-DMA nucleation rate in iodine-rich regions of China. With declining anthropogenic pollution driven by carbon neutrality and clean air policies in China, IA could enhance nucleation rates by 1.5 to 50 times by 2060. Our results demonstrate the overlooked key role of IA in continental NPF nucleation and highlight the necessity for considering synergistic SA-IA-DMA nucleation in atmospheric modeling for correct representation of the climatic impacts of aerosols.
RESUMO
Nucleosomes present a barrier for the binding of most transcription factors (TFs). However, special TFs known as nucleosome-displacing factors (NDFs) can access embedded sites and cause the depletion of the local nucleosomes as well as repositioning of the neighboring nucleosomes. Here, we developed a novel high-throughput method in yeast to identify NDFs among 104 TFs and systematically characterized the impact of orientation, affinity, location, and copy number of their binding motifs on the nucleosome occupancy. Using this assay, we identified 29 NDF motifs and divided the nuclear TFs into three groups with strong, weak, and no nucleosome-displacing activities. Further studies revealed that tight DNA binding is the key property that underlies NDF activity, and the NDFs may partially rely on the DNA replication to compete with nucleosome. Overall, our study presents a framework to functionally characterize NDFs and elucidate the mechanism of nucleosome invasion.
Assuntos
Nucleossomos/metabolismo , Saccharomycetales/metabolismo , Cromatina/metabolismo , Replicação do DNA , DNA Fúngico/metabolismo , Proteínas de Ligação a DNA/metabolismo , Ensaios de Triagem em Larga Escala/métodos , Histonas/metabolismo , Humanos , Modelos Moleculares , Nucleossomos/genética , Regiões Promotoras Genéticas , Ligação Proteica , Multimerização Proteica , Saccharomycetales/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismoRESUMO
Neurofeedback, a non-invasive intervention, has been increasingly used as a potential treatment for major depressive disorders. However, the effectiveness of neurofeedback in alleviating depressive symptoms remains uncertain. To address this gap, we conducted a comprehensive meta-analysis to evaluate the efficacy of neurofeedback as a treatment for major depressive disorders. We conducted a comprehensive meta-analysis of 22 studies investigating the effects of neurofeedback interventions on depression symptoms, neurophysiological outcomes, and neuropsychological function. Our analysis included the calculation of Hedges' g effect sizes and explored various moderators like intervention settings, study designs, and demographics. Our findings revealed that neurofeedback intervention had a significant impact on depression symptoms (Hedges' g = -0.600) and neurophysiological outcomes (Hedges' g = -0.726). We also observed a moderate effect size for neurofeedback intervention on neuropsychological function (Hedges' g = -0.418). As expected, we observed that longer intervention length was associated with better outcomes for depressive symptoms (ß = -4.36, P < 0.001) and neuropsychological function (ß = -2.89, P = 0.003). Surprisingly, we found that shorter neurofeedback sessions were associated with improvements in neurophysiological outcomes (ß = 3.34, P < 0.001). Our meta-analysis provides compelling evidence that neurofeedback holds promising potential as a non-pharmacological intervention option for effectively improving depressive symptoms, neurophysiological outcomes, and neuropsychological function in individuals with major depressive disorders.
Assuntos
Transtorno Depressivo Maior , Neurorretroalimentação , Neurorretroalimentação/métodos , Humanos , Transtorno Depressivo Maior/terapia , Transtorno Depressivo Maior/fisiopatologia , Resultado do Tratamento , Eletroencefalografia/métodosRESUMO
Indole is often associated with a sweet and floral odor typical of jasmine flowers at low concentrations and an unpleasant, animal-like odor at high concentrations. However, the mechanism whereby the brain processes this opposite valence of indole is not fully understood yet. In this study, we aimed to investigate the neural mechanisms underlying indole valence encoding in conversion and nonconversion groups using the smelling task to arouse pleasantness. For this purpose, 12 conversion individuals and 15 nonconversion individuals participated in an event-related functional magnetic resonance imaging paradigm with low (low-indole) and high (high-indole) indole concentrations in which valence was manipulated independent of intensity. The results of this experiment showed that neural activity in the right amygdala, orbitofrontal cortex and insula was associated with valence independent of intensity. Furthermore, activation in the right orbitofrontal cortex in response to low-indole was positively associated with subjective pleasantness ratings. Conversely, activation in the right insula and amygdala in response to low-indole was positively correlated with anticipatory hedonic traits. Interestingly, while amygdala activation in response to high-indole also showed a positive correlation with these hedonic traits, such correlation was observed solely with right insula activation in response to high-indole. Additionally, activation in the right amygdala in response to low-indole was positively correlated with consummatory pleasure and hedonic traits. Regarding olfactory function, only activation in the right orbitofrontal cortex in response to high-indole was positively correlated with olfactory identification, whereas activation in the insula in response to low-indole was negatively correlated with the level of self-reported olfactory dysfunction. Based on these findings, valence transformation of indole processing in the right orbitofrontal cortex, insula, and amygdala may be associated with individual hedonic traits and perceptual differences.
Assuntos
Mapeamento Encefálico , Indóis , Imageamento por Ressonância Magnética , Humanos , Masculino , Feminino , Adulto , Adulto Jovem , Odorantes , Encéfalo/fisiologia , Encéfalo/diagnóstico por imagem , Percepção Olfatória/fisiologia , Emoções/fisiologia , Olfato/fisiologiaRESUMO
Hypertriglyceridemia (HTG) is a common cardiovascular risk factor characterized by elevated triglyceride (TG) levels. Researchers have assessed the genetic factors that influence HTG in studies focused predominantly on individuals of European ancestry. However, relatively little is known about the contribution of genetic variation of HTG in people of African ancestry (AA), potentially constraining research and treatment opportunities. Our objective was to characterize genetic profiles among individuals of AA with mild-to-moderate HTG and severe HTG versus those with normal TGs by leveraging whole-genome sequencing data and longitudinal electronic health records available in the All of Us program. We compared the enrichment of functional variants within five canonical TG metabolism genes, an AA-specific polygenic risk score for TGs, and frequencies of 145 known potentially causal TG variants between HTG patients and normal TG among a cohort of AA patients (N = 15,373). Those with mild-to-moderate HTG (N = 342) and severe HTG (N ≤ 20) were more likely to carry APOA5 p.S19W (odds ratio = 1.94, 95% confidence interval = [1.48-2.54], P = 1.63 × 10-6 and OR = 3.65, 95% confidence interval: [1.22-10.93], P = 0.02, respectively) than those with normal TG. They were also more likely to have an elevated (top 10%) polygenic risk score, elevated carriage of potentially causal variant alleles, and carry any genetic risk factor. Alternative definitions of HTG yielded comparable results. In conclusion, individuals of AA with HTG were enriched for genetic risk factors compared to individuals with normal TGs.
Assuntos
Hipertrigliceridemia , Triglicerídeos , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Apolipoproteína A-V/genética , Negro ou Afro-Americano/genética , População Negra/genética , Hipertrigliceridemia/etnologia , Hipertrigliceridemia/genética , Triglicerídeos/sangue , Estados Unidos/epidemiologiaRESUMO
BACKGROUND: Sect. Tuberculata belongs to Camellia, and its members are characterized by a wrinkled pericarp and united filaments. All the plants in this group, which are endemic to China, are highly valuable for exploring the evolution of Camellia and have great potential for use as an oil source. However, due to the complex and diverse phenotypes of these species and the difficulty of investigating them in the field, their complex evolutionary history and interspecific definitions have remained largely unelucidated. RESULTS: Therefore, we newly sequenced and annotated 12 chloroplast (cp) genomes and retrieved the published cp genome of Camellia anlungensis Chang in sect. Tuberculata. In this study, comparative analysis of the cp genomes of the thirteen sect. Tuberculata species revealed a typical quadripartite structure characterized by a total sequence length ranging from 156,587 bp to 157,068 bp. The cp.genome arrangement is highly conserved and moderately differentiated. A total of 130 to 136 genes specific to the three types were identified by annotation, including protein-coding genes (coding sequences (CDSs)) (87-91), tRNA genes (35-37), and rRNA genes (8). The total observed frequency ranged from 23,045 (C. lipingensis) to 26,557 (C. anlungensis). IR region boundaries were analyzed to show that the ycf1 gene of C. anlungensis is located in the IRb region, while the remaining species are present only in the IRa region. Sequence variation in the SSC region is greater than that in the IR region, and most protein-coding genes have high codon preferences. Comparative analyses revealed six hotspot regions (tRNA-Thr(GGT)-psbD, psbE-petL, ycf15-tRNA-Leu(CAA), ndhF-rpl32, ndhD, and trnL(CAA)-ycf15) in the cp genomes that could serve as potential molecular markers. In addition, the results of phylogenetic tree construction based on the cp genomes showed that the thirteen sect. Tuberculata species formed a monophyletic group and were divided into two evolutionarily independent clades, confirming the independence of the section. CONCLUSIONS: In summary, we obtained the cp genomes of thirteen sect. Tuberculata plants and performed the first comparative analysis of this group. These results will help us better characterize the plants in this section, deepen our understanding of their genetic characteristics and phylogenetic relationships, and lay the theoretical foundation for their accurate classification, elucidation of their evolutionary changes, and rational development and utilization of this section in the future.
Assuntos
Camellia , Genoma de Cloroplastos , Filogenia , Camellia/genética , Genoma de Cloroplastos/genética , Genômica , RNA de TransferênciaRESUMO
Holistic and analytic thinking are two distinct modes of thinking used to interpret the world with relative preferences varying across cultures. While most research on these thinking styles has focused on behavioral and cognitive aspects, a few studies have utilized functional magnetic resonance imaging (fMRI) to explore the correlations between brain metrics and self-reported scale scores. Other fMRI studies used single holistic and analytic thinking tasks. As a single task may involve processing in spurious low-level regions, we used two different holistic and analytic thinking tasks, namely the frame-line task and the triad task, to seek convergent brain regions to distinguish holistic and analytic thinking using multivariate pattern analysis (MVPA). Results showed that brain regions fundamental to distinguish holistic and analytic thinking include the bilateral frontal lobes, bilateral parietal lobes, bilateral precentral and postcentral gyrus, bilateral supplementary motor areas, bilateral fusiform, bilateral insula, bilateral angular gyrus, left cuneus, and precuneus, left olfactory cortex, cingulate gyrus, right caudate and putamen. Our study maps brain regions that distinguish between holistic and analytic thinking and provides a new approach to explore the neural representation of cultural constructs. We provide initial evidence connecting culture-related brain regions with language function to explain the origins of cultural differences in cognitive styles.
Assuntos
Mapeamento Encefálico , Encéfalo , Imageamento por Ressonância Magnética , Pensamento , Humanos , Pensamento/fisiologia , Masculino , Feminino , Adulto Jovem , Mapeamento Encefálico/métodos , Adulto , Encéfalo/fisiologia , Encéfalo/diagnóstico por imagemRESUMO
A highly efficient palladium-catalyzed asymmetric tandem aza-Heck/Sonogashira coupling reaction of O-phenyl hydroxamic ethers with terminal alkynes is described. This protocol enables versatile access to challenging chiral isoindolinone derivatives bearing a quaternary stereogenic center. The palladium-catalyzed aminoalkynylation reaction shows broad functional group tolerance and allows the straightforward preparation of isoindolinones with high efficiency and excellent enantioselectivity under mild conditions. DFT calculations were performed to disclose the reaction mechanism and the origins of the enantioselectivity.
RESUMO
BACKGROUND: AGTPBP1 is a cytosolic carboxypeptidase that cleaves poly-glutamic acids from the C terminus or side chains of α/ß tubulins. Although its dysregulated expression has been linked to the development of non-small cell lung cancer, the specific roles and mechanisms of AGTPBP1 in pancreatic cancer (PC) have yet to be fully understood. In this study, we examined the role of AGTPBP1 on PC in vitro and in vivo. METHODS: Immunohistochemistry was used to examine the expression of AGTPBP1 in PC and non-cancerous tissues. Additionally, we assessed the malignant behaviors of PC cells following siRNA-mediated AGTPBP1 knockdown both in vitro and in vivo. RNA sequencing and bioinformatics analysis were performed to identify the differentially expressed genes regulated by AGTPBP1. RESULTS: We determined that AGTPBP1 was overexpressed in PC tissues and the higher expression of AGTPBP1 was closely related to the location of tumors. AGTPBP1 inhibition can significantly decrease cell progression in vivo and in vitro. Moreover, the knockdown of AGTPBP1 inhibited the expression of ERK1/2, P-ERK1/2, MYLK, and TUBB4B proteins via the ERK signaling pathway. CONCLUSION: Our research indicates that AGTPBP1 may be a putative therapeutic target for PC.
Assuntos
Carboxipeptidases , Regulação Neoplásica da Expressão Gênica , Sistema de Sinalização das MAP Quinases , Microtúbulos , Neoplasias Pancreáticas , Animais , Feminino , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Carboxipeptidases/metabolismo , Carboxipeptidases/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células , Progressão da Doença , Microtúbulos/metabolismo , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , D-Ala-D-Ala Carboxipeptidase Tipo Serina/genética , D-Ala-D-Ala Carboxipeptidase Tipo Serina/metabolismo , Proteínas de Ligação ao GTP/genética , Proteínas de Ligação ao GTP/metabolismoRESUMO
As an important component of highly heterogeneous exosomes, exosomal microRNAs (miRNAs) have great potential as noninvasive biomarkers for cancer diagnosis. Therefore, a sensitive and simple sensor is the key for its clinical application. Herein, we designed an exponential amplification reaction (EXPAR) to induce the reactivation of the CRISPR-associated protein 9/small guide RNA (Cas9/sgRNA) complex, thus achieving sensitive and visual exosomal miRNAs-21 (miR-21) fluorescence sensing. In this design, we inactivated the sgRNA by hybridizing sgRNA and blocker DNA. Then, we used a trigger DNA to hybridize with miR-21 and produced a lot of activated DNA by EXPAR. Those activated DNA further hybridized with blocker DNA and released the free sgRNA to form the activated Cas9/sgRNA complex. Based on the quick cleavage of activated Cas9/sgRNA complex, the reporter DNA labeled by SYBR Green I was released from the surface of the magnetic nanoparticles (MNPs) into the supernatant, and thus was used to sensitively quantify the miRNAs concentration with a limit of detection of 3 × 103 particles/mL. In addition, this fluorescence sensor has also been successfully employed to distinguish healthy people and cancer patients by naked-eye observation of the fluorescence, thus demonstrating its great potential for accurate and point-of-care cancer diagnosis.
Assuntos
MicroRNAs , Neoplasias , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Sistemas CRISPR-Cas/genética , RNA Guia de Sistemas CRISPR-Cas , DNA/genética , Neoplasias/diagnóstico , Neoplasias/genéticaRESUMO
Candida auris (C. auris) was first discovered in Japan in 2009 and has since spread worldwide. It exhibits strong transmission ability, high multidrug resistance, blood infectivity, and mortality rates. Traditional diagnostic techniques for C. auris have shortcomings, leading to difficulty in its timely diagnosis and identification. Therefore, timely and accurate diagnostic assays for clinical samples are crucial. We developed a novel, rapid recombinase-aided amplification (RAA) assay targeting the 18S rRNA, ITS1, 5.8S rRNA, ITS2, and 28S rRNA genes for C. auris identification. This assay can rapidly amplify DNA at 39 °C in 20 min. The analytical sensitivity and specificity were evaluated. From 241 clinical samples collected from pediatric inpatients, none were detected as C. auris-positive. We then prepared simulated clinical samples by adding 10-fold serial dilutions of C. auris into the samples to test the RAA assay's efficacy and compared it with that of real-time PCR. The assay demonstrated an analytical sensitivity of 10 copies/µL and an analytical specificity of 100%. The lower detection limit of the RAA assay for simulated clinical samples was 101 CFU/mL, which was better than that of real-time PCR (102-103 CFU/mL), demonstrating that the RAA assay may have a better detection efficacy for clinical samples. In summary, the RAA assay has high sensitivity, specificity, and detection efficacy. This assay is a potential new method for detecting C. auris, with simple reaction condition requirements, thus helping to manage C. auris epidemics.
Assuntos
Candida auris , Técnicas de Amplificação de Ácido Nucleico , Recombinases , Técnicas de Amplificação de Ácido Nucleico/métodos , Humanos , Recombinases/metabolismo , Candida auris/genética , Candidíase/diagnóstico , Candidíase/microbiologia , Limite de Detecção , DNA Fúngico/genética , DNA Fúngico/análiseRESUMO
Novel features derived from imaging and artificial intelligence systems are commonly coupled to construct computer-aided diagnosis (CAD) systems that are intended as clinical support tools or for investigation of complex biological patterns. This study used sulcal patterns from structural images of the brain as the basis for classifying patients with schizophrenia from unaffected controls. Statistical, machine learning and deep learning techniques were sequentially applied as a demonstration of how a CAD system might be comprehensively evaluated in the absence of prior empirical work or extant literature to guide development, and the availability of only small sample datasets. Sulcal features of the entire cerebral cortex were derived from 58 schizophrenia patients and 56 healthy controls. No similar CAD systems has been reported that uses sulcal features from the entire cortex. We considered all the stages in a CAD system workflow: preprocessing, feature selection and extraction, and classification. The explainable AI techniques Local Interpretable Model-agnostic Explanations and SHapley Additive exPlanations were applied to detect the relevance of features to classification. At each stage, alternatives were compared in terms of their performance in the context of a small sample. Differentiating sulcal patterns were located in temporal and precentral areas, as well as the collateral fissure. We also verified the benefits of applying dimensionality reduction techniques and validation methods, such as resubstitution with upper bound correction, to optimize performance.
Assuntos
Inteligência Artificial , Esquizofrenia , Humanos , Esquizofrenia/diagnóstico por imagem , Neuroimagem , Aprendizado de Máquina , Diagnóstico por ComputadorRESUMO
Cisplatin-induced acute kidney injury (AKI) restricts the use of cisplatin as a first-line chemotherapeutic agent. Our previous study showed that prophylactic vitamin C supplementation may act as an epigenetic modulator in alleviating cisplatin-induced AKI in mice. However, the targets of vitamin C and the mechanisms underlying the epigenetics changes remain largely unknown. Herein, whole-genome bisulfite sequencing and bulk RNA sequencing were performed on the kidney tissues of mice treated with cisplatin with prophylactic vitamin C supplementation (treatment mice) or phosphate-buffered saline (control mice) at 24 h after cisplatin treatment. Ascorbyl phosphate magnesium (APM), an oxidation-resistant vitamin C derivative, was found that led to global hypomethylation in the kidney tissue and regulated different functional genes in the promoter region and gene body region. Integrated evidence suggested that APM enhanced renal ion transport and metabolism, and reduced apoptosis and inflammation in the kidney tissues. Strikingly, Mapk15, Slc22a6, Cxcl5, and Cd44 were the potential targets of APM that conferred protection against cisplatin-induced AKI. Moreover, APM was found to be difficult to rescue cell proliferation and apoptosis caused by cisplatin in the Slc22a6 knockdown cell line. These results elucidate the mechanism by which vitamin C as an epigenetic regulator to protects against cisplatin-induced AKI and provides a new perspective and evidence support for controlling the disease process through regulating DNA methylation.
Assuntos
Injúria Renal Aguda , Antineoplásicos , Camundongos , Animais , Cisplatino/efeitos adversos , Antineoplásicos/farmacologia , Desmetilação do DNA , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/genética , Injúria Renal Aguda/prevenção & controle , Rim/metabolismo , Apoptose , Magnésio/metabolismo , Vitaminas/farmacologia , Suplementos Nutricionais , Ácido Ascórbico/metabolismo , Fosfatos/metabolismo , Camundongos Endogâmicos C57BLRESUMO
BACKGROUND: The sect. Chrysantha Chang of plants with yellow flowers of Camellia species as the "Queen of the Tea Family", most of these species are narrowly distributed endemics of China and are currently listed Grde-II in National Key Protected Wild Plant of China. They are commercially important plants with horticultural medicinal and scientific research value. However, the study of the sect. Chrysantha species genetics are still in its infancy, to date, the mitochondrial genome in sect. Chrysantha has been still unexplored. RESULTS: In this study, we provide a comprehensive assembly and annotation of the mitochondrial genomes for four species within the sect. Chrysantha. The results showed that the mitochondrial genomes were composed of closed-loop DNA molecules with sizes ranging from 850,836 bp (C. nitidissima) to 1,098,121 bp (C. tianeensis) with GC content of 45.71-45.78% and contained 48-58 genes, including 28-37 protein-coding genes, 17-20 tRNA genes and 2 rRNA genes. We also examined codon usage, sequence repeats, RNA editing and selective pressure in the four species. Then, we performed a comprehensive comparison of their basic structures, GC contents, codon preferences, repetitive sequences, RNA editing sites, Ka/Ks ratios, haplotypes, and RNA editing sites. The results showed that these plants differ little in gene type and number. C. nitidissima has the greatest variety of genes, while C. tianeensis has the greatest loss of genes. The Ka/Ks values of the atp6 gene in all four plants were greater than 1, indicating positive selection. And the codons ending in A and T were highly used. In addition, the RNA editing sites differed greatly in number, type, location, and efficiency. Twelve, six, five, and twelve horizontal gene transfer (HGT) fragments were found in C. tianeensis, Camellia huana, Camellia liberofilamenta, and C. nitidissima, respectively. The phylogenetic tree clusters the four species of sect. Chrysantha plants into one group, and C. huana and C. liberofilamenta have closer affinities. CONCLUSIONS: In this study, the mitochondrial genomes of four sect. Chrysantha plants were assembled and annotated, and these results contribute to the development of new genetic markers, DNA barcode databases, genetic improvement and breeding, and provide important references for scientific research, population genetics, and kinship identification of sect. Chrysantha plants.
Assuntos
Camellia , Genoma Mitocondrial , China , Camellia/genética , Filogenia , Edição de RNA , Genoma de Planta , Composição de BasesRESUMO
Cognitive impairment is a common issue among human patients undergoing surgery, yet the neural mechanism causing this impairment remains unidentified. Surgical procedures often lead to glial cell activation and neuronal hypoexcitability, both of which are known to contribute to postoperative cognitive dysfunction (POCD). However, the role of neuron-glia crosstalk in the pathology of POCD is still unclear. Through integrated transcriptomics and proteomics analyses, we found that the complement cascades and microglial phagocytotic signaling pathways are activated in a mouse model of POCD. Following surgery, there is a significant increase in the presence of complement C3, but not C1q, in conjunction with presynaptic elements. This triggers a reduction in excitatory synapses, a decline in excitatory synaptic transmission, and subsequent memory deficits in the mouse model. By genetically knockout out C3ar1 or inhibiting p-STAT3 signaling, we successfully prevented neuronal hypoexcitability and alleviated cognitive impairment in the mouse model. Therefore, targeting the C3aR and downstream p-STAT3 signaling pathways could serve as potential therapeutic approaches for mitigating POCD.
Assuntos
Complemento C3 , Modelos Animais de Doenças , Transtornos da Memória , Camundongos Knockout , Microglia , Animais , Camundongos , Microglia/metabolismo , Transtornos da Memória/etiologia , Transtornos da Memória/metabolismo , Complemento C3/metabolismo , Complemento C3/genética , Camundongos Endogâmicos C57BL , Fator de Transcrição STAT3/metabolismo , Fator de Transcrição STAT3/genética , Receptores de Complemento/metabolismo , Receptores de Complemento/genética , Masculino , Complicações Cognitivas Pós-Operatórias/metabolismo , Complicações Cognitivas Pós-Operatórias/etiologia , Sinapses/metabolismo , Sinapses/patologia , Potenciais Pós-Sinápticos Excitadores/fisiologia , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacosRESUMO
The significant attraction toward aqueous proton batteries (APBs) is attributable to their expedited kinetics, elevated safety profile, and economical feasibility. Nevertheless, their practical implement is significantly blocked by the unsatisfactory energy density due to the limited cathode materials. Herein, vanadium hexacyanoferrate Prussian blue analog (VOHCF) is introduced as a potentially favorable cathode material for APBs. The findings demonstrate that this VOHCF electrode exhibits a notable reversible capacity of 102.7 mAh g-1 and exceptional cycling stability, with 95.4% capacity retention over 10 000 cycles at 10 A g-1 . It is noteworthy that this is the detailed instance of VOHCF being proposed as a cathode for APBs. Combining the in situ characterization techniques and theoretical simulations, the origins of excellent proton storage performance are revealed as the multiple redox mechanisms with double active centers of âC≡N group and VâO bond in VOHCF as well as the robust structure stability. A proton full cell with excellent performance is further achieved by coupling the VOHCF cathode and diquinoxalino[2,3-a:2',3'-c] phenazine (HATN) anode, demonstrating the great potential of VOHCF in practical applications. This work could provide fundamental understanding to the development of feasible cathode materials for proton storage device.
RESUMO
Solar-driven interfacial evaporation is an efficient method for purifying contaminated or saline water. Nonetheless, the suboptimal design of the structure and composition still necessitates a compromise between evaporation rate and service life. Therefore, achieving efficient production of clean water remains a key challenge. Here, a biomimetic dictyophora hydrogel based on loofah/carbonized sucrose@ZIF-8/polyvinyl alcohol is demonstrated, which can serve as an independent solar evaporator for clean water recovery. This special structural design achieves effective thermal positioning and minimal heat loss, while reducing the actual enthalpy of water evaporation. The evaporator achieves a pure water evaporation rate of 3.88 kg m-2 h-1 and a solar-vapor conversion efficiency of 97.16% under 1 sun irradiation. In comparison, the wastewater evaporation rate of the evaporator with ZIF-8 remains at 3.85 kg m-2 h-1 for 30 days, which is 16.3% higher than the light irradiation without ZIF-8. Equally important, the evaporator also showcases the capability to cleanse water from diverse sources of contaminants, including those with small molecules, oil, heavy metal ions, and bacteria, greatly improving the lifespan of the evaporator.
RESUMO
Klebsiella pneumoniae can enter a viable but nonculturable (VBNC) state to survive in unfavorable environments. Our research found that high-, medium-, and low-alcohol-producing K. pneumoniae strains are associated with nonalcoholic fatty liver disease. However, the presence of the three Kpn strains has not been reported in the VBNC state or during resuscitation. In this study, the effects of different strains, salt concentrations, oxygen concentrations, temperatures, and nutrients in K. pneumoniae VBNC state were evaluated. The results showed that high-alcohol-producing K. pneumoniae induced a slower VBNC state than medium-alcohol-producing K. pneumoniae, and low-alcohol-producing K. pneumoniae. A high-salt concentration and micro-oxygen environment accelerated the loss of culturability. Simultaneously, both real-time quantitative PCR and droplet digital PCR were developed to compare the quantitative comparison of three Kpn strain VBNC states by counting single-copy gene numbers. At 22°C or 37°C, the number of culturable cells decreased significantly from about 108 to 105-106 CFU/mL. In addition, imipenem, ciprofloxacin, polymyxin, and phiW14 inhibited cell resuscitation but could not kill VBNC-state cells. These results revealed that the different environments evaluated play different roles in the VBNC induction process, and new effective strategies for eliminating VBNC-state cells need to be further studied. These findings provide a better understanding of VBNC-state occurrence, maintenance, detection, and absolute quantification, as well as metabolic studies of resuscitation resistance and ethanol production.IMPORTANCEBacteria may enter VBNC state under different harsh environments. Pathogenic VBNC bacteria cells in clinical and environmental samples pose a potential threat to public health because cells cannot be found by routine culture. The alcohol-producing Kpn VBNC state was not reported, and the influencing factors were unknown. The formation and recovery of VBNC state is a complete bacterial escape process. We evaluated the influence of multiple induction conditions on the formation of VBNC state and recovery from antibiotic and bacteriophage inhibition, and established a sensitive molecular method to enumerate the VBNC cells single-copy gene. The method can improve the sensitivity of pathogen detection in clinical, food, and environmental contamination monitoring, and outbreak warning. The study of the formation and recovery of VBNC-state cells under different stress environments will also promote the microbiological research on the development, adaptation, and resuscitation in VBNC-state ecology.