Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
BMC Plant Biol ; 24(1): 445, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38778277

RESUMO

BACKGROUND: Acer is a taxonomically intractable and speciose genus that contains over 150 species. It is challenging to distinguish Acer species only by morphological method due to their abundant variations. Plastome and nuclear ribosomal DNA (nrDNA) sequences are recommended as powerful next-generation DNA barcodes for species discrimination. However, their efficacies were still poorly studied. The current study will evaluate the application of plastome and nrDNA in species identification and perform phylogenetic analyses for Acer. RESULT: Based on a collection of 83 individuals representing 55 species (c. 55% of Chinese species) from 13 sections, our barcoding analyses demonstrated that plastomes exhibited the highest (90.47%) species discriminatory power among all plastid DNA markers, such as the standard plastid barcodes matK + rbcL + trnH-psbA (61.90%) and ycf1 (76.19%). And the nrDNA (80.95%) revealed higher species resolution than ITS (71.43%). Acer plastomes show abundant interspecific variations, however, species identification failure may be due to the incomplete lineage sorting (ILS) and chloroplast capture resulting from hybridization. We found that the usage of nrDNA contributed to identifying those species that were unidentified by plastomes, implying its capability to some extent to mitigate the impact of hybridization and ILS on species discrimination. However, combining plastome and nrDNA is not recommended given the cytonuclear conflict caused by potential hybridization. Our phylogenetic analysis covering 19 sections (95% sections of Acer) and 128 species (over 80% species of this genus) revealed pervasive inter- and intra-section cytonuclear discordances, hinting that hybridization has played an important role in the evolution of Acer. CONCLUSION: Plastomes and nrDNA can significantly improve the species resolution in Acer. Our phylogenetic analysis uncovered the scope and depth of cytonuclear conflict in Acer, providing important insights into its evolution.


Assuntos
Acer , Código de Barras de DNA Taxonômico , DNA de Plantas , DNA Ribossômico , Filogenia , Acer/genética , Código de Barras de DNA Taxonômico/métodos , DNA Ribossômico/genética , DNA de Plantas/genética , Plastídeos/genética , Especificidade da Espécie , Núcleo Celular/genética
2.
BMC Plant Biol ; 24(1): 23, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38166728

RESUMO

BACKGROUND: Spiraea L. is a genus comprising approximately 90 species that are distributed throughout the northern temperate regions. China is recognized as the center of species diversity for this genus, hosting more than 70 species, including 47 endemic species. While Spiraea is well-known for its ornamental value, its taxonomic and phylogenetic studies have been insufficient. RESULTS: In this study, we conducted sequencing and assembly of the plastid genomes (plastomes) of 34 Asiatic Spiraea accessions (representing 27 Asiatic Spiraea species) from China and neighboring regions. The Spiraea plastid genome exhibits typical quadripartite structures and encodes 113-114 genes, including 78-79 protein-coding genes (PCGs), 30 tRNA genes, and 4 rRNA genes. Linear regression analysis revealed a significant correlation between genome size and the length of the SC region. By the sliding windows method, we identified several hypervariable hotspots within the Spiraea plastome, all of which were localized in the SC regions. Our phylogenomic analysis successfully established a robust phylogenetic framework for Spiraea, but it did not support the current defined section boundaries. Additionally, we discovered that the genus underwent diversification after the Early Oligocene (~ 30 Ma), followed by a rapid speciation process during the Pliocene and Pleistocene periods. CONCLUSIONS: The plastomes of Spiraea provided us invaluable insights into its phylogenetic relationships and evolutionary history. In conjunction with plastome data, further investigations utilizing other genomes, such as the nuclear genome, are urgently needed to enhance our understanding of the evolutionary history of this genus.


Assuntos
Genoma de Cloroplastos , Genomas de Plastídeos , Rosaceae , Spiraea , Filogenia , Evolução Molecular , Genoma de Cloroplastos/genética
3.
BMC Plant Biol ; 23(1): 359, 2023 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-37452336

RESUMO

BACKGROUND: Lysimachia L., the second largest genus within the subfamily Myrsinoideae of Primulaceae, comprises approximately 250 species worldwide. China is the species diversity center of Lysimachia, containing approximately 150 species. Despite advances in the backbone phylogeny of Lysimachia, species-level relationships remain poorly understood due to limited genomic information. This study analyzed 50 complete plastomes for 46 Lysimachia species. We aimed to identify the plastome structure features and hypervariable loci of Lysimachia. Additionally, the phylogenetic relationships and phylogenetic conflict signals in Lysimachia were examined. RESULTS: These fifty plastomes within Lysimachia had the typical quadripartite structure, with lengths varying from 152,691 to 155,784 bp. Plastome size was positively correlated with IR and intron length. Thirteen highly variable regions in Lysimachia plastomes were identified. Additionally, ndhB, petB and ycf2 were found to be under positive selection. Plastid ML trees and species tree strongly supported that L. maritima as sister to subg. Palladia + subg. Lysimachia (Christinae clade), while the nrDNA ML tree clearly placed L. maritima and subg. Palladia as a sister group. CONCLUSIONS: The structures of these plastomes of Lysimachia were generally conserved, but potential plastid markers and signatures of positive selection were detected. These genomic data provided new insights into the interspecific relationships of Lysimachia, including the cytonuclear discordance of the position of L. maritima, which may be the result of ghost introgression in the past. Our findings have established a basis for further exploration of the taxonomy, phylogeny and evolutionary history within Lysimachia.


Assuntos
Genomas de Plastídeos , Primulaceae , Primulaceae/genética , Filogenia , Lysimachia , Plastídeos/genética , Evolução Molecular
4.
BMC Genomics ; 23(1): 223, 2022 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-35313810

RESUMO

BACKGROUND: Musaceae is an economically important family consisting of 70-80 species. Elucidation of the interspecific relationships of this family is essential for a more efficient conservation and utilization of genetic resources for banana improvement. However, the scarcity of herbarium specimens and quality molecular markers have limited our understanding of the phylogenetic relationships in wild species of Musaceae. Aiming at improving the phylogenetic resolution of Musaceae, we analyzed a comprehensive set of 49 plastomes for 48 species/subspecies representing all three genera of this family. RESULTS: Musaceae plastomes have a relatively well-conserved genomic size and gene content, with a full length ranging from 166,782 bp to 172,514 bp. Variations in the IR borders were found to show phylogenetic signals to a certain extent in Musa. Codon usage bias analysis showed different preferences for the same codon between species and three genera and a common preference for A/T-ending codons. Among the two genes detected under positive selection (dN/dS > 1), ycf2 was indicated under an intensive positive selection. The divergent hotspot analysis allowed the identification of four regions (ndhF-trnL, ndhF, matK-rps16, and accD) as specific DNA barcodes for Musaceae species. Bayesian and maximum likelihood phylogenetic analyses using full plastome resulted in nearly identical tree topologies with highly supported relationships between species. The monospecies genus Musella is sister to Ensete, and the genus Musa was divided into two large clades, which corresponded well to the basic number of n = x = 11 and n = x =10/9/7, respectively. Four subclades were divided within the genus Musa. A dating analysis covering the whole Zingiberales indicated that the divergence of Musaceae family originated in the Palaeocene (59.19 Ma), and the genus Musa diverged into two clades in the Eocene (50.70 Ma) and then started to diversify from the late Oligocene (29.92 Ma) to the late Miocene. Two lineages (Rhodochlamys and Australimusa) radiated recently in the Pliocene /Pleistocene periods. CONCLUSIONS: The plastome sequences performed well in resolving the phylogenetic relationships of Musaceae and generated new insights into its evolution. Plastome sequences provided valuable resources for population genetics and phylogenetics at lower taxon.


Assuntos
Magnoliopsida , Musa , Musaceae , Teorema de Bayes , Musa/genética , Musaceae/genética , Filogenia
5.
BMC Genomics ; 23(1): 770, 2022 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-36424546

RESUMO

BACKGROUND: Although knowledge of the sizes, contents, and forms of plant mitochondrial genomes (mitogenomes) is increasing, little is known about the mechanisms underlying their structural diversity. Evolutionary information on the mitogenomes of Primula, an important ornamental taxon, is more limited than the information on their nuclear and plastid counterparts, which has hindered the comprehensive understanding of Primula mitogenomic diversity and evolution. The present study reported and compared three Primula mitogenomes and discussed the size expansion of mitogenomes in Ericales. RESULTS: Mitogenome master circles were sequenced and successfully assembled for three Primula taxa and were compared with publicly available Ericales mitogenomes. The three mitogenomes contained similar gene contents and varied primarily in their structures. The Primula mitogenomes possessed relatively high nucleotide diversity among all examined plant lineages. In addition, high nucleotide diversity was found among Primula species between the Mediterranean and Himalaya-Hengduan Mountains. Most predicted RNA editing sites appeared in the second amino acid codon, increasing the hydrophobic character of the protein. An early stop in atp6 caused by RNA editing was conserved across all examined Ericales species. The interfamilial relationships within Ericales and interspecific relationships within Primula could be well resolved based on mitochondrial data. Transfer of the two longest mitochondrial plastid sequences (MTPTs) occurred before the divergence of Primula and its close relatives, and multiple independent transfers could also occur in a single MTPT sequence. Foreign sequence [MTPTs and mitochondrial nuclear DNA sequences (NUMTs)] uptake and repeats were to some extent associated with changes in Ericales mitogenome size, although none of these relationships were significant overall. CONCLUSIONS: The present study revealed relatively conserved gene contents, gene clusters, RNA editing, and MTPTs but considerable structural variation in Primula mitogenomes. Relatively high nucleotide diversity was found in the Primula mitogenomes. In addition, mitogenomic genes, collinear gene clusters, and locally collinear blocks (LCBs) all showed phylogenetic signals. The evolutionary history of MTPTs in Primula was complicated, even in a single MTPT sequence. Various reasons for the size variation observed in Ericales mitogenomes were found.


Assuntos
Ericales , Genoma Mitocondrial , Primula , Genoma Mitocondrial/genética , Primula/genética , Filogenia , Ericales/genética , Evolução Molecular , DNA Mitocondrial/genética , Nucleotídeos
6.
BMC Plant Biol ; 22(1): 32, 2022 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-35027008

RESUMO

BACKGROUND: The East Asian subtropical evergreen broad-leaved forests (EBLFs) harbor remarkable biodiversity. However, their historical assembly remains unclear. To gain new insights into the assembly of this biome, we generated a molecular phylogeny of one of its essential plant groups, the tribe Perseeae (Lauraceae). RESULTS: Our plastid tree topologies were robust to analyses based on different plastid regions and different strategies for data partitioning, nucleotide substitution saturation, and gap handling. We found that tribe Perseeae comprised six major clades and began to colonize the subtropical EBLFs of East Asia in the early Miocene. The diversification rates of tribe Perseeae accelerated twice in the late Miocene. CONCLUSIONS: Our findings suggest that the intensified precipitation in East Asia in the early Miocene may have facilitated range expansions of the subtropical EBLFs and establishment of tribe Perseeae within this biome. By the late Miocene, species assembly and diversification within the EBLFs had become rapid.


Assuntos
Biodiversidade , Evolução Biológica , Lauraceae/genética , Filogenia , Filogeografia , Plastídeos/genética , Árvores/genética , Ásia Oriental , Florestas
7.
Ann Bot ; 130(1): 41-52, 2022 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-35460565

RESUMO

BACKGROUND AND AIMS: Ongoing global warming is a challenge for humankind. A series of drastic climatic changes have been proven to have occurred throughout the Cenozoic based on a variety of geological evidence, which helps to better understand our planet's future climate. Notably, extant biomes have recorded drastic environmental shifts. The climate in southern Asia, which hosts high biodiversity, is deeply impacted by the Asian monsoon. The origins and evolutionary dynamics of biomes occurring between the tropics and sub-tropics in southern Asia have probably been deeply impacted by climatic changes; however, these aspects remain poorly studied. We tested whether the evolutionary dynamics of the above biomes have recorded the drastic, late Cenozoic environmental shifts, by focusing on Magnolia section Michelia of the family Magnoliaceae. METHODS: We established a fine time-calibrated phylogeny of M. section Michelia based on complete plastid genomes and inferred its ancestral ranges. Finally, we estimated the evolutionary dynamics of this section through time, determining its diversification rate and the dispersal events that occurred between tropical and sub-tropical areas. KEY RESULTS: The tropical origin of M. section Michelia was dated to the late Oligocene; however, the diversification of its core group (i.e. M. section Michelia subsection Michelia) has occurred mainly from the late Miocene onward. Two key evolutionary shifts (dated approx. 8 and approx. 3 million years ago, respectively) were identified, each of them probably in response to drastic climatic changes. CONCLUSION: Here, we inferred the underlying evolutionary dynamics of biomes in southern Asia, which probably reflect late Cenozoic climatic changes. The occurrence of modern Asian monsoons was probably fundamental for the origin of M. section Michelia; moreover, the occurrence of asymmetric dispersal events between the tropics and sub-tropics hint at an adaptation strategy of M. section Michelia to global cooling, in agreement with the tropical conservatism hypothesis.


Assuntos
Magnolia , Magnoliaceae , Biodiversidade , Mudança Climática , Filogenia
8.
New Phytol ; 219(1): 436-448, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29663397

RESUMO

What causes the disparity in biodiversity among regions is a fundamental question in biogeography, ecology, and evolutionary biology. Evolutionary and biogeographic processes (speciation, extinction, dispersal) directly determine species richness patterns, and can be studied using integrative phylogenetic approaches. However, the strikingly high richness of East Asia relative to other Northern Hemisphere regions remains poorly understood from this perspective. Here, for the first time, we test two general hypotheses (older colonization time, faster diversification rate) to explain this pattern, using the plant tribe Lysimachieae (Primulaceae) as a model system. We generated a new time-calibrated phylogeny for Lysimachieae (13 genes, 126 species), to estimate colonization times and diversification rates for each region and to test the relative importance of these two factors for explaining regional richness patterns. We find that neither time nor diversification rates alone explain richness patterns among regions in Lysimachieae. Instead, a new index that combines both factors explains global richness patterns in the group and their high East Asian biodiversity. Based on our results from Lysimachieae, we suggest that the high richness of plants in East Asia may be explained by a combination of older colonization times and faster diversification rates in this region.


Assuntos
Biodiversidade , Filogenia , Primulaceae/fisiologia , Ásia Oriental , Filogeografia , Primulaceae/genética
9.
Mol Phylogenet Evol ; 98: 184-200, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26923493

RESUMO

Pogostemon (Lamiaceae; Lamioideae) sensu lato is a large genus consisting of about 80 species with a disjunct African/Asian distribution. The infrageneric taxonomy of the genus has historically been troublesome due to morphological variability and putative convergent evolution within the genus. Notably, some species of Pogostemon are obligately aquatic, perhaps the only Lamiaceae taxa which exhibit this trait. Phylogenetic analyses using the nuclear ribosomal internal transcribed spacer (ITS) and five plastid regions (matK, rbcL, rps16, trnH-psbA, trnL-F), confirmed the monophyly of Pogostemon and its sister relationship with the genus Anisomeles. Pogostemon was resolved into two major clades, and none of the three morphologically defined subgenera of Pogostemon were supported as monophyletic. Inflorescence type (spikes with more than two lateral branches vs. a single terminal spike, or rarely with two lateral branches) is phylogenetically informative and consistent with the two main clades we recovered. Accordingly, a new infrageneric classification of Pogostemon consisting of two subgenera is proposed. Molecular dating and biogeographic diversification analyses suggest that Pogostemon split from its sister genus in southern and southeast Asia in the early Miocene. The early strengthening of the Asia monsoon system that was triggered by the uplifting of the Qinghai-Tibetan Plateau may have played an important role in the subsequent diversification of the genus. In addition, our results suggest that transoceanic long-distance dispersal of Pogostemon from Asia to Africa occurred at least twice, once in the late Miocene and again during the late-Miocene/early-Pliocene.


Assuntos
Evolução Molecular , Filogenia , Pogostemon/classificação , Pogostemon/genética , África , Ásia , Fenótipo , Plastídeos/genética
10.
Molecules ; 21(5)2016 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-27171065

RESUMO

Primula poissonii (Primulaceae) is a perennial herb, widely distributed in the Hengduan Mountain region of Southwest China. In this study, Roche 454 pyrosequencing was used to isolate microsatellite markers. A total of 4528 unique sequences were identified from 68,070 unique reads. Of these, eighty-seven microsatellite loci were screened for utility using two criteria: successful PCR amplification and variation of these loci within three wild P. poissonii populations. Twenty loci were successfully amplified and exhibited polymorphic alleles. The number of observed alleles ranged from 1 to 9 with an average of 3.5. The observed and expected heterozygosities ranged from 0.087 to 1.000 and from 0.124 to 0.828, respectively. Among these SSR loci, only the P69 locus could not be cross-amplified successfully in two closely related species P. wilsonii and P. anisodora. The microsatellite loci developed in this study will be useful for studying genetic diversity and speciation events between P. poissonii and closely related Primula species.


Assuntos
DNA de Plantas/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Repetições de Microssatélites , Primula/genética , China , Loci Gênicos , Marcadores Genéticos , Especiação Genética , Variação Genética , Reação em Cadeia da Polimerase , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA