Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Biodegradation ; 21(1): 1-10, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19554459

RESUMO

To provide beneficial guide for the application of the magnetic field in the bio-treatment of the Cr(VI)-contained wastewater, sludge samples from the control bio-system A (absent of magnetic field) and the contrast bio-system B (present of magnetic field) were used to adsorb the synthetic wastewater with 100 mg l(-1) Cr(VI). Influences of two adsorption modes, single adsorption and once continuous adsorption, on the Cr(VI) adsorption capacities of both sludge samples were compared. And the influence of regeneration on the Cr(VI) adsorption capacities were also studied. The results of adsorption experiments showed that the Cr(VI) adsorption capacities of the first single adsorption for sludge sample A and B were pretty nearly, which were 9.79 and 9.93 mg, respectively. And after 5 single adsorption periods, the total Cr(VI) adsorption capacity and efficiency of the sample B were 25.88 and 55.66 mg Cr(VI) g(-1)VSS, while those of the control were 14.95 and 33.98 mg Cr(VI) g(-1)VSS, respectively. For the sludge sample A and B after a single adsorption, both functions of regeneration were remarkable. But after 13 cycles of the single adsorption-regeneration, the Cr(VI) adsorption capacity and efficiency of the sample B were 110.15 and 189.91 mg Cr(VI) g(-1)VSS, while those of the control were 70.89 and 140.38 mg Cr(VI) g(-1)VSS, respectively. Though the Cr(VI) adsorption capacity of a once continuous adsorption period was more than that of a single adsorption period obviously, the Cr(VI) removal rates of the sludge sample A and B in the third period of once continuous adsorption-regeneration were only 8.12 and 33.51%, respectively. It was concluded that the weak magnetic field did improve the Cr(VI) bio-removal efficiency and the sludge stability, the batch treatment was an ideal operation mode for the bio-treatment of the Cr(VI)-contained wastewater, as compared with the continuous operation mode, but regeneration and enough sludge content were two necessary conditions to ensure the efficiency of batch treatment.


Assuntos
Bactérias/química , Cromo/química , Magnetismo , Esgotos/química , Poluentes do Solo/metabolismo , Adsorção , Anaerobiose , Bactérias/metabolismo , Biodegradação Ambiental , Cromo/metabolismo , Esgotos/microbiologia
2.
Biodegradation ; 20(6): 875-83, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19543694

RESUMO

Two modes of magnetic fields were applied in the Cr(6+) removal sludge reactors containing two predominated strains--Bacillus sp. and Brevibacillus sp., respectively. The magnetic field mode I* of 0-4.5 or 0-14 mT between pieces was obtained by setting the magnetic pieces with the surface magnetic density of 0-6 or 0-20 mT into the reactor, and the magnetic field mode II* of 6, 20, or 40 mT on the return line was obtained by controlling the working distance of the permanent magnet outside the sludge return line. The effects of different magnetic fields on the activity of the given anaerobic sludge were studied by comparing with the control (absent of magnetic field). The results showed that the magnetic field of 0-4 mT improved the activity of given sludge most effectively, U(max) CH(4) (the peak methane-producing rate) and the methane producing volume per gCOD(Cr) reached 64.3 mlCH(4)/gVSS.d and 124 mlCH(4)/gCOD(Cr), which increased by 20.6 and 70.7%, respectively, compared with the control. And the magnetic field of 20 mT took second place. It could be concluded that the input of some magnetic field could improve the activity of anaerobic sludge by increasing the transformation efficiency of COD(Cr) matters to methane, and the total organic wastage did not increase.


Assuntos
Magnetismo , Esgotos/microbiologia , Anaerobiose , Reatores Biológicos/microbiologia , Metano/metabolismo , Oxigênio/isolamento & purificação , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA