Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Phys Chem Chem Phys ; 23(3): 2298-2304, 2021 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-33447832

RESUMO

Using Born-Oppenheimer ab initio molecular dynamics (BOAIMD) simulations, the high-density water (HDW) and low-density water (LDW) structures based on SCAN meta-GGA are compared with those based on PBE GGA. Compared with Car-Parrinello ab initio molecular dynamics (CPAIMD) simulations, BOAIMD simulations can produce more accurate results because no fictitious electron mass is introduced. At each state point, our simulations continue for 100 ps after the system reached equilibrium, which is the longest ab initio simulations of liquid water reported so far and can ensure an accurate statistical average. The influence of the size effect and nuclear quantum effect on structure is not considered in the present work, but only that of two different functionals on the structure is discussed. It is found that, in HDW, just as shown using CPAIMD simulations, the SCAN-based hydrogen-bonds (HBs) are more flexible than the PBE-based ones, which makes the structure based on SCAN obviously closer to the experimental results than that based on PBE. However, it is not the case in LDW, and the difference between the results based on these two functionals is very small.

2.
Phys Chem Chem Phys ; 22(8): 4626-4631, 2020 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-32051988

RESUMO

Based on the newly developed SCAN meta-GGA and the widely used PBE-GGA functionals, ab initio molecular dynamics are performed on water. It is proved that, although the SCAN meta-GGA is not as good as the TIP4P/2005 model potential in describing the equation of state of water, it is much better than the PBE-GGA, the ST2 model potential, and ab initio trained neural network potentials. Moreover, the SCAN meta-GGA predicts a first-order liquid-liquid transition from high- to low-density water at negative pressure, in which the structures are qualitatively consistent with experimental observations, and the spinodal point of high-density water is very close to Speedy's stability limit line.

3.
Front Plant Sci ; 14: 1275464, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37799557

RESUMO

Introduction: Seasonal droughts will become more severe and frequent under the context of global climate change, this would result in significant variations in the root distribution and water utilization patterns of plants. However, research on the determining factors of deep fine root and water utilization is limited. Methods: We measured the fine root biomass and water utilization of trees, shrubs and herbs, and soil properties, light transmission, and community structure parameters in subtropical pine plantations with seasonal droughts. Results and Discussion: We found that the proportion of deep fine roots (below 1 m depth) is only 0.2-5.1%, but that of deep soil water utilization can reach 20.9-38.6% during the dry season. Trees improve deep soil water capture capacity by enhancing their dominance in occupying deep soil volume, and enhance their deep resource foraging by increasing their branching capacity of absorptive roots. Shrubs and herbs showed different strategies for deep water competition: shrubs tend to exhibit a "conservative" strategy and tend to increase individual competitiveness, while herbs exhibited an "opportunistic" strategy and tend to increase variety and quantity to adapt to competitions. Conclusion: Our results improve our understanding of different deep fine root distribution and water use strategies between overstory trees and understory vegetations, and emphasize the importance of deep fine root in drought resistance as well as the roles of deep soil water utilization in shaping community assembly.

4.
ACS Omega ; 8(32): 29346-29358, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37599934

RESUMO

Hybrid sedimentary rocks (HSR) represent a significant reservoir type in fine-grained sediments. However, the classification and understanding of HSR reservoirs, including their storage mechanisms and identification of optimal "sweet spots," have been limited due to the lack of clarity regarding the multiple sources of components and their mixing processes. This study focuses on the Lucaogou formation of Jimusaer Sag and aims to highlight the reservoir classification principles, controlling factors, and evolutionary patterns associated with the components of HSR, beginning with examining the microscopic pore structure. The analysis of the microscopic pore structure characteristics reveals the presence of five distinct reservoir types within the HSR. The quality of these reservoirs is governed by various factors, including the composition and support mode of particles, diagenesis, provenance, and sedimentary microfacies. In regions near a provenance with strong hydrodynamic conditions, the HSR predominantly exhibits type I and type II reservoirs, characterized by numerous coarse-grained components and a granular-support mode. As the distance from the provenance increases, transitioning into medium hydrodynamic conditions, the HSR shifts to an interbedded-support mode, primarily developing type III reservoirs. In areas far from the provenance with weak hydrodynamic conditions, HSR reservoir types primarily consist of type IV and type V. Additionally, diagenetic effects such as compaction and calcite cementation further deteriorate intergranular and dissolution pores, consequently diminishing reservoir quality. Notably, during the mixing deposition processes of sand and dolomite, the developmental mode of HSR shifts from type I to type II and type III. Likewise, in the mixing deposition of mud and sand, the HSR transitions from type II to type III and type IV. Similarly, the mixing deposition of dolomite and mud leads to a change in the developmental mode of HSR from type III to type IV and type V. Moreover, this study effectively predicts the occurrence of "sweet spots" using reservoir classification, which reveals their continuous distribution. These findings provide a geological foundation for evaluating "sweet spots" and testing the oil production in HSR reservoirs.

5.
Biomacromolecules ; 12(7): 2562-72, 2011 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-21598958

RESUMO

This study aimed to optimize poly(ethylene glycol)-b-poly(ε-caprolactone) (PEG-b-PCL)-based amphiphilic block copolymers for achieving a better micellar drug delivery system (DDS) with improved solubilization and delivery of doxorubicin (DOX). First, the Flory-Huggins interaction parameters between DOX and the core-forming segments [i.e., poly(ε-caprolactone) (PCL) and poly[(ε-caprolactone-co-γ-(carbamic acid benzyl ester)-ε-caprolactone] (P(CL-co-CABCL))] was calculated to assess the drug-polymer compatibility. The results indicated a better compatibility between DOX and P(CL-co-CABCL) than that between DOX and PCL, motivating the synthesis of monomethoxy-poly(ethylene glycol)-b-poly[(ε-caprolactone-co-γ-(carbamic acid benzyl ester)-ε-caprolactone] (mPEG-b-P(CL-co-CABCL)) block copolymer. Second, two novel block copolymers of mPEG-b-P(CL-co-CABCL) with different compositions were prepared via ring-opening polymerization of CL and CABCL using mPEG as a macroinitiator and characterized by (1)H NMR, FT-IR, GPC, WAXD, and DSC techniques. It was found that the introduction of CABCL decreased the crystallinity of mPEG-b-PCL copolymer. Micellar formation of the copolymers in aqueous solution was investigated with fluorescence spectroscopy, DLS and TEM. mPEG-b-P(CL-co-CABCL) copolymers had a lower critical micelle concentration (CMC) than mPEG-b-PCL and subsequently led to an improved stability of prepared micelles. Furthermore, both higher loading capacity and slower in vitro release of DOX were observed for micelles of copolymers with increased content of CABCL, attributed to both improved drug-core compatibility and favorable amorphous core structure. Meanwhile, DOX-loaded micelles facilitated better uptake of DOX by HepG2 cells and were mainly retained in the cytosol, whereas free DOX accumulated more in the nuclei. However, possibly because of the slower intracellular release of DOX, DOX-loaded micelles were less potent in inhibiting cell proliferation than free DOX in vitro. Taken together, the introduction of CABCL in the core-forming block of mPEG-b-PCL resulted in micelles with superior properties, which hold great promise for drug delivery applications.


Assuntos
Doxorrubicina/química , Sistemas de Liberação de Medicamentos , Lactonas/química , Polietilenoglicóis/química , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Doxorrubicina/farmacologia , Humanos , Lactonas/farmacologia , Micelas , Estrutura Molecular , Tamanho da Partícula , Polietilenoglicóis/farmacologia , Solubilidade , Relação Estrutura-Atividade , Propriedades de Superfície , Distribuição Tecidual , Células Tumorais Cultivadas
6.
Curr Top Med Chem ; 14(6): 781-818, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24444150

RESUMO

Recent advances in synthesis of functional poly-ε-caprolactone (PCL) and its self-assembly behavior, as well as application in drug delivery have been reviewed. Three strategies including end group functionalization, postpolymerization modification and new monomer preparation have been summarized to show possibilities for PCL derivatives. Complex architectures like cyclic and multi-arm PCL have been emphasized. Both chemical composition and topology have coordinately affected the property of PCL-based materials on the molecular level. A large variety of PCLs with sophisticated topology like block, graft, cyclic, and star have displayed versatile morphologies in solutions. These selfassembly aggregates have been applied as nano-scaled drug carries either to physically encapsulate or covalently conjugate drugs for controlled release. In particular, PCL with pendant groups has been extensively studied to illustrate the noncovalent interaction with drugs and the influence on the release profile. In general, functional PCL has shown great potential in construct of complicated supramolecular structures, and thus as ideal drug carriers for sustainable and targeted delivery.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Poliésteres/química , Poliésteres/síntese química , Humanos
7.
J Colloid Interface Sci ; 368(1): 64-9, 2012 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-22154913

RESUMO

In this study, a series of membranes with different amino group densities were prepared to investigate the surface properties of the novel poly(γ-amino-ε-caprolactone-co-ε-caprolactone) (NPCL) copolymer synthesized by our laboratory. Meanwhile, the human mesenchymal stem cells' (hMSCs) behavior on those membranes was examined. The molecular characteristics of the NPCL copolymers were characterized by nuclear magnetic resonance (NMR), size exclusion chromatography (SEC), and differential scanning calorimetry (DSC). Surface properties of membranes were characterized by water contact angle analysis, X-ray photoelectron spectroscopy analysis (XPS), and atomic force microscopy (AFM). It was found that the incorporation of amino groups to the poly(ε-caprolactone) (PCL) backbone resulted in an augmented wettability, a decreased crystallinity, and also an increased surface roughness on the NPCL membranes. In vitro cell experiments showed a significant enhancement in hMSCs' adhesion, proliferation, and osteogenic differentiation on NPCL membranes compared with virgin PCL membrane, and demonstrated that surface properties of membrane played an important role in tailoring cell behavior.


Assuntos
Adesão Celular , Diferenciação Celular , Proliferação de Células , Células-Tronco Mesenquimais/citologia , Osteogênese , Poliésteres/química , Polímeros/química , Aminas/química , Varredura Diferencial de Calorimetria , Células Cultivadas , Cromatografia em Gel , Humanos , Teste de Materiais , Espectroscopia Fotoeletrônica , Propriedades de Superfície , Molhabilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA