Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Bioinformatics ; 40(6)2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38897656

RESUMO

MOTIVATION: Predicting protein-ligand binding affinity is crucial in new drug discovery and development. However, most existing models rely on acquiring 3D structures of elusive proteins. Combining amino acid sequences with ligand sequences and better highlighting active sites are also significant challenges. RESULTS: We propose an innovative neural network model called DEAttentionDTA, based on dynamic word embeddings and a self-attention mechanism, for predicting protein-ligand binding affinity. DEAttentionDTA takes the 1D sequence information of proteins as input, including the global sequence features of amino acids, local features of the active pocket site, and linear representation information of the ligand molecule in the SMILE format. These three linear sequences are fed into a dynamic word-embedding layer based on a 1D convolutional neural network for embedding encoding and are correlated through a self-attention mechanism. The output affinity prediction values are generated using a linear layer. We compared DEAttentionDTA with various mainstream tools and achieved significantly superior results on the same dataset. We then assessed the performance of this model in the p38 protein family. AVAILABILITY AND IMPLEMENTATION: The resource codes are available at https://github.com/whatamazing1/DEAttentionDTA.


Assuntos
Redes Neurais de Computação , Ligação Proteica , Proteínas , Ligantes , Proteínas/química , Proteínas/metabolismo , Sequência de Aminoácidos , Software , Sítios de Ligação , Biologia Computacional/métodos , Bases de Dados de Proteínas
2.
Appl Environ Microbiol ; 89(1): e0187822, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36602359

RESUMO

Rhizopus oryzae lipase (ROL) is one of the most important enzymes used in the food, biofuel, and pharmaceutical industries. However, the highly demanding conditions of industrial processes can reduce its stability and activity. To seek a feasible method to improve both the catalytic activity and the thermostability of this lipase, first, the structure of ROL was divided into catalytic and noncatalytic regions by identifying critical amino acids in the crevice-like binding pocket. Second, a mutant screening library aimed at improvement of ROL catalytic performance by virtual saturation mutagenesis of residues in the catalytic region was constructed based on Rosetta's Cartesian_ddg protocol. A double mutant, E265V/S267W (with an E-to-V change at residue 265 and an S-to-W change at residue 267), with markedly improved catalytic activity toward diverse chain-length fatty acid esters was identified. Then, computational design of disulfide bonds was conducted for the noncatalytic amino acids of E265V/S267W, and two potential disulfide bonds, S61C-S115C and E190C-E238C, were identified as candidates. Experimental data validated that the variant E265V/S267W/S61C-S115C/E190C-E238C had superior stability, with an increase of 8.5°C in the melting temperature and a half-life of 31.7 min at 60°C, 4.2-fold longer than that of the wild-type enzyme. Moreover, the variant improved the lipase activity toward five 4-nitrophenyl esters by 1.5 to 3.8 times, exhibiting a potential to modify the catalytic efficiency. IMPORTANCE Rhizopus oryzae lipase (ROL) is very attractive in biotechnology and industry as a safe and environmentally friendly biocatalyst. Functional expression of ROL in Escherichia coli facilitates effective high-throughput screening for positive variants. This work highlights a method to improve both selectivity and thermostability based on a combination of virtual saturation mutagenesis in the substrate pocket and disulfide bond prediction in the noncatalytic region. Using the method, ROL thermostability and activity to diverse 4-nitrophenyl esters could be substantially improved. The strategy of rational introduction of multiple mutations in different functional domains of the enzyme is a great prospect in the modification of biocatalysts.


Assuntos
Lipase , Rhizopus oryzae , Rhizopus oryzae/metabolismo , Lipase/metabolismo , Rhizopus/genética , Rhizopus/metabolismo , Mutagênese , Aminoácidos/genética , Dissulfetos/química , Estabilidade Enzimática
3.
Int J Mol Sci ; 24(10)2023 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-37240270

RESUMO

The search for and characterization of new lipases with excellent properties has always been urgent and is of great importance to meet industrial needs. In this study, a new lipase, lipB, from Pseudomonas fluorescens SBW25, belonging to the lipase subfamily I.3, was cloned and expressed in Bacillus subtilis WB800N. Enzymatic properties studies of recombinant LipB found that it exhibited the highest activity towards p-nitrophenyl caprylate at 40 °C and pH 8.0, retaining 73% of its original activity after incubation at 70 °C for 6 h. In addition, Ca2+, Mg2+, and Ba2+ strongly enhanced the activity of LipB, while Cu2+, Zn2+, Mn2+, and CTAB showed an inhibiting effect. The LipB also displayed noticeable tolerance to organic solvents, especially acetonitrile, isopropanol, acetone, and DMSO. Moreover, LipB was applied to the enrichment of polyunsaturated fatty acids from fish oil. After hydrolyzing for 24 h, it could increase the contents of polyunsaturated fatty acids from 43.16% to 72.18%, consisting of 5.75% eicosapentaenoic acid, 19.57% docosapentaenoic acid, and 46.86% docosahexaenoic acid, respectively. The properties of LipB render it great potential in industrial applications, especially in health food production.


Assuntos
Lipase , Pseudomonas fluorescens , Lipase/metabolismo , Pseudomonas fluorescens/genética , Pseudomonas fluorescens/metabolismo , Ácidos Graxos Insaturados , Ácidos Docosa-Hexaenoicos , Ácido Eicosapentaenoico , Estabilidade Enzimática
4.
Int J Mol Sci ; 24(10)2023 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-37239928

RESUMO

Innovations in biocatalysts provide great prospects for intolerant environments or novel reactions. Due to the limited catalytic capacity and the long-term and labor-intensive characteristics of mining enzymes with the desired functions, de novo enzyme design was developed to obtain industrial application candidates in a rapid and convenient way. Here, based on the catalytic mechanisms and the known structures of proteins, we proposed a computational protein design strategy combining de novo enzyme design and laboratory-directed evolution. Starting with the theozyme constructed using a quantum-mechanical approach, the theoretical enzyme-skeleton combinations were assembled and optimized via the Rosetta "inside-out" protocol. A small number of designed sequences were experimentally screened using SDS-PAGE, mass spectrometry and a qualitative activity assay in which the designed enzyme 1a8uD1 exhibited a measurable hydrolysis activity of 24.25 ± 0.57 U/g towards p-nitrophenyl octanoate. To improve the activity of the designed enzyme, molecular dynamics simulations and the RosettaDesign application were utilized to further optimize the substrate binding mode and amino acid sequence, thus keeping the residues of theozyme intact. The redesigned lipase 1a8uD1-M8 displayed enhanced hydrolysis activity towards p-nitrophenyl octanoate-3.34 times higher than that of 1a8uD1. Meanwhile, the natural skeleton protein (PDB entry 1a8u) did not display any hydrolysis activity, confirming that the hydrolysis abilities of the designed 1a8uD1 and the redesigned 1a8uD1-M8 were devised from scratch. More importantly, the designed 1a8uD1-M8 was also able to hydrolyze the natural middle-chained substrate (glycerol trioctanoate), for which the activity was 27.67 ± 0.69 U/g. This study indicates that the strategy employed here has great potential to generate novel enzymes exhibiting the desired reactions.


Assuntos
Caprilatos , Lipase , Lipase/metabolismo , Hidrólise , Proteínas , Ácidos Graxos , Especificidade por Substrato , Ésteres
5.
Int J Mol Sci ; 23(20)2022 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-36293150

RESUMO

Sustainable renewable polymer foam used as a lightweight porous skeleton for microwave absorption is a novel strategy that can effectively solve the problems of the large surface density, high additive amount, and narrow absorbing band of absorbing materials. In this article, novel renewable microwave-absorbing foams were prepared using Sapiumse biferum kernel oil-based polyurethane foam (BPUF) as porous matrix and Fe3O4-nanoparticles as magnetic absorbents. The microstructure and the microwave absorption performance, the structural effects on the properties, and electromagnetic mechanism of the magnetic BPUF (mBPUF) were systematically characterized and analyzed. The results show that the mBPUF displayed a porous hierarchical structure and was multi-interfacial, which provided a skeleton and matching layer for the Fe3O4 nanoparticles. The effective reflection loss (RL ≤ -10 dB) frequency of the mBPUF was from 4.16 GHz to 18 GHz with only 9 wt% content of Fe3O4 nanoparticles at a thickness of 1.5~5 mm. The surface density of the mBPUF coatings was less than 0.5 kg/cm2 at a thickness of 1.8 mm. The lightweight characteristics and broadband absorption were attributed to the porous hierarchical structures and the dielectric combined with the magnetic loss effect. It indicates that the mBPUF is a prospective broadband-absorbing material in the field of lightweight stealth materials.


Assuntos
Micro-Ondas , Poliuretanos , Estudos Prospectivos , Polímeros
6.
Int J Mol Sci ; 23(22)2022 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-36430193

RESUMO

In nature, DNA is ubiquitous, existing not only inside but also outside of the cells of organisms. Intracellular DNA (iDNA) plays an essential role in different stages of biological growth, and it is defined as the carrier of genetic information. In addition, extracellular DNA (eDNA) is not enclosed in living cells, accounting for a large proportion of total DNA in the environment. Both the lysis-dependent and lysis-independent pathways are involved in eDNA release, and the released DNA has diverse environmental functions. This review provides an insight into the origin as well as the multiple ecological functions of eDNA. Furthermore, the main research advancements of eDNA in the various ecological environments and the various model microorganisms are summarized. Furthermore, the major methods for eDNA extraction and quantification are evaluated.


Assuntos
DNA , DNA Bacteriano/genética , DNA/genética
7.
Molecules ; 25(20)2020 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-33066055

RESUMO

Esterases are a large family of enzymes with wide applications in the industry. However, all esterases originated from natural sources, limiting their use in harsh environments or newly- emerged reactions. In this study, we designed a new esterase to develop a new protocol to satisfy the needs for better biocatalysts. The ideal spatial conformation of the serine catalytic triad and the oxygen anion hole at the substrate-binding site was constructed by quantum mechanical calculation. The catalytic triad and oxygen anion holes were then embedded in the protein scaffold using the new enzyme protocol in Rosetta 3. The design results were subsequently evaluated, and optimized designs were used for expression and purification. The designed esterase had significant lytic activities towards p-nitrophenyl acetate, which was confirmed by point mutations. Thus, this study developed a new protocol to obtain novel enzymes that may be useful in unforgiving environments or novel reactions.


Assuntos
Esterases/química , Esterases/metabolismo , Nitrofenóis/metabolismo , Engenharia de Proteínas/métodos , Domínio Catalítico , Bases de Dados de Proteínas , Esterases/genética , Hidrólise , Mutação , Oxigênio/química , Teoria Quântica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
8.
Metab Eng ; 55: 231-238, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31382013

RESUMO

As an alternative to in vitro lipase dependent biotransformation and to traditional assembly of pathways in cytoplasm, the present study focused on targeting lipase dependent pathways to a subcellular compartment lipid body (LB), in combination with compartmentalization of associated pathways in other lipid relevant organelles including endoplasmic reticulum (ER) and peroxisome for efficient in vivo biosynthesis of fatty acid methyl esters (FAMEs) and hydrocarbons, in the context of improving Yarrowia lipolytica lipid pool. Through knock in and knock out of key genes involved in triacylglycerols (TAGs) biosynthesis and degradation, the TAGs content was increased to 51.5%, from 7.2% in parent strain. Targeting lipase dependent pathway to LB gave a 10-fold higher FAMEs titer (1028.0 mg/L) compared to cytosolic pathway (102.8 mg/L). Furthermore, simultaneously targeting lipase dependent pathway to LB, ER and peroxisome gave rise to the highest FAMEs titer (1644.8 mg/L). The subcellular compartment engineering strategy was extended to other lipase dependent pathways for fatty alkene and alkane biosynthesis, which resulted in a 14-fold titer enhancement compared to traditional cytosolic pathways. We developed yeast subcellular cell factories by directing lipase dependent pathways towards the TAGs storage organelle LB for efficient biosynthesis of TAG derived chemicals for the first time. The successful exploration of targeting metabolic pathways towards LB centered organelles is expected to promote subcellular compartment engineering for other lipid derived product biosynthesis.


Assuntos
Proteínas Fúngicas , Lipase , Engenharia Metabólica , Microrganismos Geneticamente Modificados , Triglicerídeos , Yarrowia , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Lipase/genética , Lipase/metabolismo , Microrganismos Geneticamente Modificados/enzimologia , Microrganismos Geneticamente Modificados/genética , Triglicerídeos/biossíntese , Triglicerídeos/genética , Yarrowia/enzimologia , Yarrowia/genética
9.
J Chem Inf Model ; 59(11): 4833-4843, 2019 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-31657922

RESUMO

Most natural proteins exhibit poor thermostability, which limits their industrial application. Computer-aided rational design is an efficient purpose-oriented method that can improve protein thermostability. Numerous machine-learning-based methods have been designed to predict the changes in protein thermostability induced by mutations. However, all of these methods have certain limitations due to existing mutation coding methods that overlook protein sequence features. Here we propose a method to predict protein thermostability using convolutional neural networks based on an in-depth study of thermostability-related protein properties. This method comprises a three-dimensional coding algorithm, including protein mutation information and a strategy to extract neighboring features at protein mutation sites based on multiscale convolution. The accuracies on the S1615 and S388 data sets, which are widely used for protein thermostability predictions, reached 86.4 and 87%, respectively. The Matthews correlation coefficient was nearly double those produced using other methods. Furthermore, a model was constructed to predict the thermostability of Rhizomucor miehei lipase mutants based on the S3661 data set, a single amino acid mutation data set screened from the ProTherm protein thermodynamics database. Compared with the RIF strategy, which consists of three algorithms, i.e., Rosetta ddg monomer, I Mutant 3.0, and FoldX, the accuracy of the proposed method was higher (75.0 vs 66.7%), and the negative sample resolution was simultaneously enhanced. These results indicate that our prediction method more effectively assessed the protein thermostability and distinguished its features, making it a powerful tool to devise mutations that enhance the thermostability of proteins, particularly enzymes.


Assuntos
Proteínas/química , Animais , Humanos , Modelos Químicos , Modelos Moleculares , Redes Neurais de Computação , Mutação Puntual , Estabilidade Proteica , Proteínas/genética , Temperatura , Termodinâmica
10.
Biochem Biophys Res Commun ; 487(1): 173-180, 2017 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-28400281

RESUMO

Pseudomonas lipases are well studied enzymes. However, few studies have been conducted to explore the mechanism underlying the regulation of lipases expression. AlgR, a global regulator, controls the expression of multiple genes, regulates bacterial peristalsis, and participates in the regulation of quorum-sensing (QS) system, and so on. In this study, the effect of AlgR on lipase expression was investigated by knocking out the algR and rsmZ genes or overexpressing them. It is found out that AlgR can regulate the expression of lipA at both transcriptional and translational levels, but the transcriptional level was dominant. AlgR is also able to regulate the expression of rsmX/rsmY/rsmZ. Additionally, using algR/rsmZ double gene knock-out, it showed that AlgR could directly bind to the promoter sequence of rsmZ to regulate lipA activity. In conclusion, this study for the first time indicates that AlgR directly binds to rsmZ to regulates the expression of lipA via regulating transcription of rsmZ, and mainly regulates the expression of lipA at transcriptional level in P. protegens Pf-5.


Assuntos
Proteínas de Bactérias/metabolismo , Lipase/metabolismo , Pseudomonas/metabolismo , RNA não Traduzido/metabolismo , Transativadores/metabolismo , Regulação Bacteriana da Expressão Gênica/fisiologia , Regulação Enzimológica da Expressão Gênica/fisiologia , Pseudomonas/classificação , Ativação Transcricional/fisiologia
11.
Crit Rev Biotechnol ; 37(1): 26-36, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26526353

RESUMO

Microbial production routes, notably whole-cell lipase-mediated biotransformation and fatty-acids-derived biosynthesis, offer new opportunities for synthesizing biodiesel. They compare favorably to immobilized lipase and chemically catalyzed processes. Genetically modified whole-cell lipase-mediated in vitro route, together with in vivo and ex vivo microbial biosynthesis routes, constitutes emerging and rapidly developing research areas for effective production of biodiesel. This review presents recent advances in customizing microorganisms for producing biodiesel, via genetic engineering of lipases and metabolic engineering (including system regulation) of fatty-acids-derived pathways. Microbial hosts used include Escherichia coli, Saccharomyces cerevisiae, Pichia pastoris and Aspergillus oryzae. These microbial cells can be genetically modified to produce lipases under different forms: intracellularly expressed, secreted or surface-displayed. They can be metabolically redesigned and systematically regulated to obtain balanced biodiesel-producing cells, as highlighted in this study. Such genetically or metabolically modified microbial cells can support not only in vitro biotransformation of various common oil feedstocks to biodiesel, but also de novo biosynthesis of biodiesel from glucose, glycerol or even cellulosic biomass. We believe that the genetically tractable oleaginous yeast Yarrowia lipolytica could be developed to an effective biodiesel-producing microbial cell factory. For this purpose, we propose several engineered pathways, based on lipase and wax ester synthase, in this promising oleaginous host.


Assuntos
Biocombustíveis , Lipase/genética , Lipase/metabolismo , Vias Biossintéticas , Escherichia coli/genética , Escherichia coli/metabolismo , Ácidos Graxos/metabolismo , Engenharia Genética , Leveduras/genética , Leveduras/metabolismo
12.
J Am Chem Soc ; 136(9): 3640-6, 2014 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-24521145

RESUMO

Cytochrome P450 enzymes are capable of catalyzing a great variety of synthetically useful reactions such as selective C-H functionalization. Surrogate redox partners are widely used for reconstitution of P450 activity based on the assumption that the choice of these auxiliary proteins or their mode of action does not affect the type and selectivity of reactions catalyzed by P450s. Herein, we present an exceptional example to challenge this postulate. MycG, a multifunctional biosynthetic P450 monooxygenase responsible for hydroxylation and epoxidation of 16-membered ring macrolide mycinamicins, is shown to catalyze the unnatural N-demethylation(s) of a range of mycinamicin substrates when partnered with the free Rhodococcus reductase domain RhFRED or the engineered Rhodococcus-spinach hybrid reductase RhFRED-Fdx. By contrast, MycG fused with the RhFRED or RhFRED-Fdx reductase domain mediates only physiological oxidations. This finding highlights the larger potential role of variant redox partner protein-protein interactions in modulating the catalytic activity of P450 enzymes.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Sistema Enzimático do Citocromo P-450/química , Sistema Enzimático do Citocromo P-450/metabolismo , Domínio Catalítico , Macrolídeos/metabolismo , Modelos Moleculares , Oxirredução , Ligação Proteica
13.
Biomolecules ; 14(6)2024 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-38927115

RESUMO

Resveratrol, a phenylpropanoid compound, exhibits diverse pharmacological properties, making it a valuable candidate for health and disease management. However, the demand for resveratrol exceeds the capacity of plant extraction methods, necessitating alternative production strategies. Microbial synthesis offers several advantages over plant-based approaches and presents a promising alternative. Yarrowia lipolytica stands out among microbial hosts due to its safe nature, abundant acetyl-CoA and malonyl-CoA availability, and robust pentose phosphate pathway. This study aimed to engineer Y. lipolytica for resveratrol production. The resveratrol biosynthetic pathway was integrated into Y. lipolytica by adding genes encoding tyrosine ammonia lyase from Rhodotorula glutinis, 4-coumarate CoA ligase from Nicotiana tabacum, and stilbene synthase from Vitis vinifera. This resulted in the production of 14.3 mg/L resveratrol. A combination of endogenous and exogenous malonyl-CoA biosynthetic modules was introduced to enhance malonyl-CoA availability. This included genes encoding acetyl-CoA carboxylase 2 from Arabidopsis thaliana, malonyl-CoA synthase, and a malonate transporter protein from Bradyrhizobium diazoefficiens. These strategies increased resveratrol production to 51.8 mg/L. The further optimization of fermentation conditions and the utilization of sucrose as an effective carbon source in YP media enhanced the resveratrol concentration to 141 mg/L in flask fermentation. By combining these strategies, we achieved a titer of 400 mg/L resveratrol in a controlled fed-batch bioreactor. These findings demonstrate the efficacy of Y. lipolytica as a platform for the de novo production of resveratrol and highlight the importance of metabolic engineering, enhancing malonyl-CoA availability, and media optimization for improved resveratrol production.


Assuntos
Engenharia Metabólica , Resveratrol , Sacarose , Yarrowia , Resveratrol/metabolismo , Yarrowia/genética , Yarrowia/metabolismo , Engenharia Metabólica/métodos , Sacarose/metabolismo , Aciltransferases/genética , Aciltransferases/metabolismo , Vitis/microbiologia , Vitis/genética , Vitis/metabolismo , Coenzima A Ligases/metabolismo , Coenzima A Ligases/genética , Malonil Coenzima A/metabolismo , Nicotiana/genética , Nicotiana/metabolismo , Nicotiana/microbiologia , Rhodotorula/genética , Rhodotorula/metabolismo , Fermentação , Arabidopsis/genética , Arabidopsis/metabolismo , Amônia-Liases , Proteínas de Bactérias
14.
ACS Appl Bio Mater ; 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38926913

RESUMO

There is an emerging strong demand for smart environmentally responsive protein-based biomaterials with improved adhesion properties, especially underwater adhesion for potential environmental and medical applications. Based on the fusion of elastin-like polypeptides (ELPs), SpyCatcher and SpyTag modules, biosynthetic barnacle-derived protein was genetically engineered and self-assembled with an enhanced adhesion ability and temperature response. The water resistance ability of the synthetic protein biopolymer with a network structure increased to 98.8 from 58.5% of the original Cp19k, and the nonaqueous adhesion strength enhanced to 1.26 from 0.68 MPa of Cp19k. The biopolymer showed an improved adhesion ability toward hydrophilic and hydrophobic surfaces as well as diatomite powders. The combination of functional module ELPs and SpyTag/SpyCatcher could endow the biosynthetic protein with temperature response, an insoluble form above 42 °C and a soluble form at 4 °C. The combinational advantages including temperature response and adhesion performance make the self-assembled protein an excellent candidate in surgical adhesion, underwater repair, and surface modification of various coatings. Distinct from the traditional approach of utilizing solely ELPs, the integration of short ELPs with Spy partners exhibited a synergistic enhancement in the temperature response. The synergistic effects of two functional modules provide a technical method and insight for designing smart self-assembled protein-based biopolymers.

15.
Biotechnol Biofuels Bioprod ; 17(1): 33, 2024 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-38402206

RESUMO

BACKGROUND: Biodiesel, an emerging sustainable and renewable clean energy, has garnered considerable attention as an alternative to fossil fuels. Although lipases are promising catalysts for biodiesel production, their efficiency in industrial-scale application still requires improvement. RESULTS: In this study, a novel strategy for multi-site mutagenesis in the binding pocket was developed via FuncLib (for mutant enzyme design) and Rosetta Cartesian_ddg (for free energy calculation) to improve the reaction rate and yield of lipase-catalyzed biodiesel production. Thermomyces lanuginosus lipase (TLL) with high activity and thermostability was obtained using the Pichia pastoris expression system. The specific activities of the mutants M11 and M21 (each with 5 and 4 mutations) were 1.50- and 3.10-fold higher, respectively, than those of the wild-type (wt-TLL). Their corresponding melting temperature profiles increased by 10.53 and 6.01 °C, [Formula: see text] (the temperature at which the activity is reduced to 50% after 15 min incubation) increased from 60.88 to 68.46 °C and 66.30 °C, and the optimum temperatures shifted from 45 to 50 °C. After incubation in 60% methanol for 1 h, the mutants M11 and M21 retained more than 60% activity, and 45% higher activity than that of wt-TLL. Molecular dynamics simulations indicated that the increase in thermostability could be explained by reduced atomic fluctuation, and the improved catalytic properties were attributed to a reduced binding free energy and newly formed hydrophobic interaction. Yields of biodiesel production catalyzed by mutants M11 and M21 for 48 h at an elevated temperature (50 °C) were 94.03% and 98.56%, respectively, markedly higher than that of the wt-TLL (88.56%) at its optimal temperature (45 °C) by transesterification of soybean oil. CONCLUSIONS: An integrating strategy was first adopted to realize the co-evolution of catalytic efficiency and thermostability of lipase. Two promising mutants M11 and M21 with excellent properties exhibited great potential for practical applications for in biodiesel production.

16.
Food Chem ; 458: 140187, 2024 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-38950510

RESUMO

We propose a co-immobilized chemo-enzyme cascade system to mitigate random intermediate diffusion from the mixture of individual immobilized catalysts and achieve a one-pot reaction of multi-enzyme and reductant. Catalyzed by lipase and lipoxygenase, unsaturated lipid hydroperoxides (HPOs) were synthesized. 13(S)-hydroperoxy-9Z, 11E-octadecadienoic acid (13-HPODE), one compound of HPOs, was subsequently reduced to 13(S)-hydroxy-9Z, 11E-octadecadienoic acid (13-HODE) by cysteine. Upon the optimized conditions, 75.28 mg of 13-HPODE and 4.01 mg of 13-HODE were produced from per milliliter of oil. The co-immobilized catalysts exhibited improved yield compared to the mixture of individually immobilized catalysts. Moreover, it demonstrated satisfactory durability and recyclability, maintaining a relative HPOs yield of 78.5% after 5 cycles. This work has achieved the co-immobilization of lipase, lipoxygenase and the reductant cysteine for the first time, successfully applying it to the conversion of soybean oil into 13-HODE. It offers a technological platform for transforming various oils into high-value products.

17.
J Agric Food Chem ; 72(11): 5867-5877, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38446418

RESUMO

De novo biosynthesis of high-value added food additive p-coumaric acid (p-CA) direct from cellulose/hemicellulose is a more sustainable route compared to the chemical route, considering the abundant cellulose/hemicellulose resources. In this study, a novel factory was constructed for the production of p-CA in Yarrowia lipolytica using cellulose/hemicellulose as the sole carbon source. Based on multicopy integration of the TAL gene and reprogramming the shikimic acid pathway, the engineered strain produced 1035.5 ± 67.8 mg/L p-CA using glucose as a carbon source. The strains with overexpression of cellulases and hemicellulases produced 84.3 ± 2.4 and 65.3 ± 4.6 mg/L p-CA, using cellulose (carboxymethyl-cellulose) or hemicellulose (xylan from bagasse) as the carbon source, respectively. This research demonstrated the feasibility of conversion of cost-effective cellulose/hemicellulose into a value-added product and provided a sustainable cellulolytic cell factory for the utilization of cellulose/hemicellulose.


Assuntos
Ácidos Cumáricos , Polissacarídeos , Yarrowia , Yarrowia/genética , Yarrowia/metabolismo , Engenharia Metabólica , Celulose/metabolismo , Carbono/metabolismo
18.
J Hazard Mater ; 476: 134954, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38936184

RESUMO

With the increasing demand for heavy metals due to the advancement of industrial activities, large proportions of heavy metals have been discharged into aquatic ecosystems, causing serious harm to human health and the environment. Existing physical and chemical methods for recovering heavy metals from wastewater encounter challenges, such as low efficiency, high processing costs, and potential secondary pollution. In this study, we developed a novel approach by engineering the endogenous sulphur metabolic pathway of Yarrowia lipolytica, providing it with the ability to produce approximately 550 ppm of sulphide. Subsequently, sulphide-producing Y. lipolytica was used for the first time in heavy metal remediation. The engineered strain exhibited a high capacity to remove various heavy metals, especially achieving over 90 % for cadmium (Cd), copper (Cu) and lead (Pb). This capacity was consistent when applied to both synthetic and actual wastewater samples. Microscopic analyses revealed that sulphide-mediated biological precipitation of metal sulphides on the cell surface is responsible for their removal. Our findings demonstrate that sulphide-producing yeasts are a robust and effective bioremediation strategy for heavy metals, showing great potential for future heavy metal pollution remediation practices.

19.
Chembiochem ; 14(3): 301-6, 2013 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-23362147

RESUMO

New hope for old bones: The plecomacrolide bafilomycin has been explored for decades as an anti-osteoporotic. However, its structural complexity has limited the synthesis of analogues. The cloning of the bafilomycin biosynthetic gene cluster from the environmental isolate Streptomyces lohii opens the door to the production of new analogues through bioengineering.


Assuntos
Macrolídeos/metabolismo , Streptomyces/genética , Antifúngicos/química , Antifúngicos/metabolismo , Biblioteca Gênica , Macrolídeos/química , Família Multigênica , Policetídeo Sintases/genética , Policetídeo Sintases/metabolismo
20.
Biomolecules ; 13(2)2023 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-36830769

RESUMO

The CRISPR-Cas system is an adaptive immune system for many bacteria and archaea to defend against foreign nucleic acid invasion, and this system is conserved in the genome of M. tuberculosis (Mtb). Although the CRISPR-Cas system-mediated immune defense mechanism has been revealed in Mtb, the regulation of cas gene expression is poorly understood. In this study, we identified a transcription factor, CasR (CRISPR-associated protein repressor, encoded by Rv1776c), and it could bind to the upstream DNA sequence of the CRISPR-Cas gene cluster and regulate the expression of cas genes. EMSA and ChIP assays confirmed that CasR could interact with the upstream sequence of the csm6 promoter, both in vivo and in vitro. Furthermore, DNA footprinting assay revealed that CasR recognized a 20 bp palindromic sequence motif and negatively regulated the expression of csm6. In conclusion, our research elucidates the regulatory effect of CasR on the expression of CRISPR-associated genes in mycobacteria, thus providing insight into gene expression regulation of the CRISPR-Cas system.


Assuntos
Mycobacterium tuberculosis , Mycobacterium tuberculosis/metabolismo , Archaea/genética , Sistemas CRISPR-Cas , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA