Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(15)2023 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-37571550

RESUMO

In recent years, environmental sound classification (ESC) has prevailed in many artificial intelligence Internet of Things (AIoT) applications, as environmental sound contains a wealth of information that can be used to detect particular events. However, existing ESC methods have high computational complexity and are not suitable for deployment on AIoT devices with constrained computing resources. Therefore, it is of great importance to propose a model with both high classification accuracy and low computational complexity. In this work, a new ESC method named BSN-ESC is proposed, including a big-small network-based ESC model that can assess the classification difficulty level and adaptively activate a big or small network for classification as well as a pre-classification processing technique with logmel spectrogram refining, which prevents distortion in the frequency-domain characteristics of the sound clip at the joint part of two adjacent sound clips. With the proposed methods, the computational complexity is significantly reduced, while the classification accuracy is still high. The proposed BSN-ESC model is implemented on both CPU and FPGA to evaluate its performance on both PC and embedded systems with the dataset ESC-50, which is the most commonly used dataset. The proposed BSN-ESC model achieves the lowest computational complexity with the number of floating-point operations (FLOPs) of only 0.123G, which represents a reduction of up to 2309 times in computational complexity compared with state-of-the-art methods while delivering a high classification accuracy of 89.25%. This work can achieve the realization of ESC being applied to AIoT devices with constrained computational resources.

2.
Sci Rep ; 14(1): 17695, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39085329

RESUMO

Enhancing crop water productivity is crucial for regional water resource management and agricultural sustainability, particularly in arid regions. However, evaluating the spatial heterogeneity and temporal dynamics of crop water productivity in face of data limitations poses a challenge. In this study, we propose a framework that integrates remote sensing data, time series generative adversarial network (TimeGAN), dynamic Bayesian network (DBN), and optimization model to assess crop water productivity and optimize crop planting structure under limited water resources allocation in the Qira oasis. The results demonstrate that the combination of TimeGAN and DBN better improves the accuracy of the model for the dynamic prediction, particularly for short-term predictions with 4 years as the optimal timescale (R2 > 0.8). Based on the spatial distribution of crop suitability analysis, wheat and corn are most suitable for cultivation in the central and eastern parts of Qira oasis while cotton is unsuitable for planting in the western region. The walnuts and Chinese dates are mainly unsuitable in the southeastern part of the oasis. Maximizing crop water productivity while ensuring food security has led to increased acreage for cotton, Chinese dates and walnuts. Under the combined action of the five optimization objectives, the average increase of crop water productivity is 14.97%, and the average increase of ecological benefit is 3.61%, which is much higher than the growth rate of irrigation water consumption of cultivated land. It will produce a planting structure that relatively reduced irrigation water requirement of cultivated land and improved crop water productivity. This proposed framework can serve as an effective reference tool for decision-makers when determining future cropping plans.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA