Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Phys Rev Lett ; 126(5): 057701, 2021 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-33605741

RESUMO

Zero-bias conductance peaks (ZBCPs) can manifest a number of notable physical phenomena and thus provide critical characteristics to the underlying electronic systems. Here, we report observations of pronounced ZBCPs in hybrid junctions composed of an oxide heterostructure LaAlO_{3}/SrTiO_{3} and an elemental superconductor Nb, where the two-dimensional electron system (2DES) at the LaAlO_{3}/SrTiO_{3} interface is known to accommodate gate-tunable Rashba spin-orbit coupling (SOC). Remarkably, the ZBCPs exhibit a domelike dependence on the gate voltage, which correlates strongly with the nonmonotonic gate dependence of the Rashba SOC in the 2DES. The origin of the observed ZBCPs can be attributed to the reflectionless tunneling effect of electrons that undergo phase-coherent multiple Andreev reflection, and their gate dependence can be explained by the enhanced quantum coherence time of electrons in the 2DES with increased momentum separation due to SOC. We further demonstrate theoretically that, in the presence of a substantial proximity effect, the Rashba SOC can directly enhance the overall Andreev conductance in the 2DES-barrier-superconductor junctions. These findings not only highlight nontrivial interplay between electron spin and superconductivity revealed by ZBCPs, but also set forward the study of superconducting hybrid structures by means of controllable SOC, which has significant implications in various research fronts from superconducting spintronics to topological superconductivity.

2.
Nano Lett ; 17(11): 6534-6539, 2017 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-28968111

RESUMO

Spin-orbit coupling (SOC) plays a crucial role for spintronics applications. Here we present the first demonstration that the Rashba SOC at the SrTiO3-based interfaces is highly tunable by photoinduced charge doping, that is, optical gating. Such optical manipulation is nonvolatile after the removal of the illumination in contrast to conventional electrostatic gating and also erasable via a warming-cooling cycle. Moreover, the SOC evolutions tuned by illuminations with different wavelengths at various gate voltages coincide with each other in different doping regions and collectively form an upward-downward trend curve: In response to the increase of conductivity, the SOC strength first increases and then decreases, which can be attributed to the orbital hybridization of Ti 3d subbands. More strikingly, the optical manipulation is effective enough to tune the interferences of Bloch wave functions from constructive to destructive and therefore to realize a transition from weak localization to weak antilocalization. The present findings pave a way toward the exploration of photoinduced nontrivial quantum states and the design of optically controlled spintronic devices.

3.
Nat Commun ; 15(1): 3870, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38719875

RESUMO

Micro-thermoelectric coolers are emerging as a promising solution for high-density cooling applications in confined spaces. Unlike thin-film micro-thermoelectric coolers with high cooling flux at the expense of cooling temperature difference due to very short thermoelectric legs, thick-film micro-thermoelectric coolers can achieve better comprehensive cooling performance. However, they still face significant challenges in both material preparation and device integration. Herein, we propose a design strategy which combines Bi2Te3-based thick film prepared by powder direct molding with micro-thermoelectric cooler integrated via phase-change batch transfer. Accurate thickness control and relatively high thermoelectric performance can be achieved for the thick film, and the high-density-integrated thick-film micro-thermoelectric cooler exhibits excellent performance with maximum cooling temperature difference of 40.6 K and maximum cooling flux of 56.5 W·cm-2 at room temperature. The micro-thermoelectric cooler also shows high temperature control accuracy (0.01 K) and reliability (over 30000 cooling cycles). Moreover, the device demonstrates remarkable capacity in power generation with normalized power density up to 214.0 µW · cm-2 · K-2. This study provides a general and scalable route for developing high-performance thick-film micro-thermoelectric cooler, benefiting widespread applications in thermal management of microsystems.

4.
Adv Mater ; 35(52): e2309629, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37956453

RESUMO

Thermoelectric (TE) effect based temperature sensor can accurately convert temperature signal into voltage without external power supply, which have great application prospects in self-powered temperature electronic skin (STES). But the fabrication of stretchable and distributed STES still remains a challenge. Here, a novel STES design strategy is proposed by combining flexible island-bridge structure with BiTe-based micro-thermoelectric generator (µ-TEG). Furthermore, a 4 × 4 vertical temperature sensor array with good stretchability and distributed sensing property has been fabricated for the first time. The interfacial chemical bonds located between the rigid islands (µ-TEG) and the flexible substrate (polydimethylsiloxane, PDMS) endow the STES with excellent stretchability, and its sensing performance remains unchanged under 30% strain (the maximum strain of human skin). Moreover, the STES sensing unit possesses high sensitivity (729 µV K-1 ), rapid response time (0.157 s), and high spatial resolution (2.75 × 2.75 mm2 ). As a proof of concept, this work demonstrates the application of the STES in the detection of mini-region heat sources in various scenarios including noncontact spatial temperature responsing, intelligent robotic thermosensing, and wearable temperature sensing. Such an inspiring design strategy is expected to provide guidance for the design and fabrication of wearable self-powered temperature sensors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA