Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Sensors (Basel) ; 24(4)2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38400266

RESUMO

Hand-gripping training is important for improving the fundamental functions of human physical activity. Bernstein's idea of "repetition without repetition" suggests that motor control function should be trained under changing states. The randomness level of load should be visualized for self-administered screening when repeating various training tasks under changing states. This study aims to develop a sensing methodology of random loads applied to both the agonist and antagonist skeletal muscles when performing physical tasks. We assumed that the time-variability and periodicity of the applied load appear in the time-series feature of muscle deformation data. In the experiment, 14 participants conducted the gripping tasks with a gripper, ball, balloon, Palm clenching, and paper. Crumpling pieces of paper (paper exercise) involves randomness because the resistance force of the paper changes depending on the shape and layers of the paper. Optical myography during gripping tasks was measured, and time-series features were analyzed. As a result, our system could detect the random movement of muscles during training.


Assuntos
Mãos , Músculo Esquelético , Humanos , Músculo Esquelético/fisiologia , Eletromiografia/métodos , Mãos/fisiologia , Exercício Físico/fisiologia , Força da Mão/fisiologia , Miografia
2.
J Physiol ; 595(1): 141-164, 2017 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-27440721

RESUMO

KEY POINTS: Spinocerebellar ataxia type 1 (SCA1) is a progressive neurodegenerative disease caused by a gene defect, leading to movement disorder such as cerebellar ataxia. It remains largely unknown which functional defect contributes to the cerebellar ataxic phenotype in SCA1. In this study, we report progressive dysfunction of metabotropic glutamate receptor (mGluR) signalling, which leads to smaller slow synaptic responses, reduced dendritic Ca2+ signals and impaired synaptic plasticity at cerebellar synapses, in the early disease stage of SCA1 model mice. We also show that enhancement of mGluR signalling by a clinically available drug, baclofen, leads to improvement of motor performance in SCA1 mice. SCA1 is an incurable disease with no effective treatment, and our results may provide mechanistic grounds for targeting mGluRs and a novel drug therapy with baclofen to treat SCA1 patients in the future. ABSTRACT: Spinocerebellar ataxia type 1 (SCA1) is a progressive neurodegenerative disease that presents with cerebellar ataxia and motor learning defects. Previous studies have indicated that the pathology of SCA1, as well as other ataxic diseases, is related to signalling pathways mediated by the metabotropic glutamate receptor type 1 (mGluR1), which is indispensable for proper motor coordination and learning. However, the functional contribution of mGluR signalling to SCA1 pathology is unclear. In the present study, we show that SCA1 model mice develop a functional impairment of mGluR signalling which mediates slow synaptic responses, dendritic Ca2+ signals, and short- and long-term synaptic plasticity at parallel fibre (PF)-Purkinje cell (PC) synapses in a progressive manner from the early disease stage (5 postnatal weeks) prior to PC death. Notably, impairment of mGluR-mediated dendritic Ca2+ signals linearly correlated with a reduction of PC capacitance (cell surface area) in disease progression. Enhancement of mGluR signalling by baclofen, a clinically available GABAB receptor agonist, led to an improvement of motor performance in SCA1 mice and the improvement lasted ∼1 week after a single application of baclofen. Moreover, the restoration of motor performance in baclofen-treated SCA1 mice matched the functional recovery of mGluR-mediated slow synaptic currents and mGluR-dependent short- and long-term synaptic plasticity. These results suggest that impairment of synaptic mGluR cascades is one of the important contributing factors to cerebellar ataxia in early and middle stages of SCA1 pathology, and that modulation of mGluR signalling by baclofen or other clinical interventions may be therapeutic targets to treat SCA1.


Assuntos
Cerebelo/fisiopatologia , Receptores de Glutamato Metabotrópico/fisiologia , Ataxias Espinocerebelares/fisiopatologia , Animais , Baclofeno/farmacologia , Baclofeno/uso terapêutico , Fenômenos Biomecânicos , Cálcio/fisiologia , Modelos Animais de Doenças , Potenciais Pós-Sinápticos Excitadores , Feminino , Agonistas dos Receptores de GABA-B/farmacologia , Agonistas dos Receptores de GABA-B/uso terapêutico , Membro Posterior/fisiologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Teste de Desempenho do Rota-Rod , Transdução de Sinais , Ataxias Espinocerebelares/tratamento farmacológico
3.
Biosci Biotechnol Biochem ; 79(6): 912-8, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25612552

RESUMO

According to the amyloid hypothesis, amyloid ß accumulates in brains with Alzheimer's disease (AD) and triggers cell death and memory deficit. Previously, we developed a rice Aß vaccine expressing Aß, which reduced brain Aß levels in the Tg2576 mouse model of familial AD. We used senescence-accelerated SAMP8 mice as a model of sporadic AD and investigated the relationship between Aß and oxidative stress. Insoluble Aß and 4-hydroxynonenal (4-HNE) levels tended to be reduced in SAMP8 mice-fed the rice Aß vaccine. We attempted to clarify the relationship between oxidative stress and Aß in vitro. Addition of Aß peptide to the culture medium resulted in an increase in 4-HNE levels in SH-SY5Y cells. Tg2576 mice, which express large amounts of Aß in their brain, also exhibited increased 4-HNE levels; this increase was inhibited by the Aß vaccine. These results indicate that Aß induces oxidative stress in cultured cells and in the mouse brain.


Assuntos
Envelhecimento , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Estresse Oxidativo , Fragmentos de Peptídeos/metabolismo , Aldeídos/metabolismo , Doença de Alzheimer/fisiopatologia , Doença de Alzheimer/prevenção & controle , Peptídeos beta-Amiloides/química , Peptídeos beta-Amiloides/genética , Animais , Encéfalo/metabolismo , Soluções Tampão , Humanos , Masculino , Aprendizagem em Labirinto , Camundongos , Camundongos Transgênicos , Oryza/genética , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Solubilidade , Vacinas/genética
4.
Sci Rep ; 14(1): 3162, 2024 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-38326369

RESUMO

The central nervous system predictively controls posture against external disturbances; however, the detailed mechanisms remain unclear. We tested the hypothesis that the cerebellar vermis plays a substantial role in acquiring predictive postural control by using a standing task with floor disturbances in rats. The intact, lesioned, and sham groups of rats sequentially underwent 70 conditioned floor-tilting trials, and kinematics were recorded. Six days before these recordings, only the lesion group underwent focal suction surgery targeting vermal lobules IV-VIII. In the naïve stage of the sequential trials, the upright postures and fluctuations due to the disturbance were mostly consistent among the groups. Although the pattern of decrease in postural fluctuation due to learning corresponded among the groups, the learning rate estimated from the lumbar displacement was significantly lower in the lesion group than in the intact and sham groups. These results suggest that the cerebellar vermis contributes to predictive postural controls.


Assuntos
Vermis Cerebelar , Cerebelo , Animais , Ratos , Cerebelo/fisiologia , Postura/fisiologia , Equilíbrio Postural
5.
Arthritis Res Ther ; 26(1): 121, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38879555

RESUMO

BACKGROUND: Janus kinase (JAK) inhibitors, such as baricitinib, are widely used to treat rheumatoid arthritis (RA). Clinical studies show that baricitinib is more effective at reducing pain than other similar drugs. Here, we aimed to elucidate the molecular mechanisms underlying the pain relief conferred by baricitinib, using a mouse model of arthritis. METHODS: We treated collagen antibody-induced arthritis (CAIA) model mice with baricitinib, celecoxib, or vehicle, and evaluated the severity of arthritis, histological findings of the spinal cord, and pain-related behaviours. We also conducted RNA sequencing (RNA-seq) to identify alterations in gene expression in the dorsal root ganglion (DRG) following baricitinib treatment. Finally, we conducted in vitro experiments to investigate the direct effects of baricitinib on neuronal cells. RESULTS: Both baricitinib and celecoxib significantly decreased CAIA and improved arthritis-dependent grip-strength deficit, while only baricitinib notably suppressed residual tactile allodynia as determined by the von Frey test. CAIA induction of inflammatory cytokines in ankle synovium, including interleukin (IL)-1ß and IL-6, was suppressed by treatment with either baricitinib or celecoxib. In contrast, RNA-seq analysis of the DRG revealed that baricitinib, but not celecoxib, restored gene expression alterations induced by CAIA to the control condition. Among many pathways changed by CAIA and baricitinib treatment, the interferon-alpha/gamma, JAK-signal transducer and activator of transcription 3 (STAT3), and nuclear factor kappa B (NF-κB) pathways were considerably decreased in the baricitinib group compared with the celecoxib group. Notably, only baricitinib decreased the expression of colony-stimulating factor 1 (CSF-1), a potent cytokine that causes neuropathic pain through activation of the microglia-astrocyte axis in the spinal cord. Accordingly, baricitinib prevented increases in microglia and astrocytes caused by CAIA. Baricitinib also suppressed JAK/STAT3 pathway activity and Csf1 expression in cultured neuronal cells. CONCLUSIONS: Our findings demonstrate the effects baricitinib has on the DRG in relation to ameliorating both inflammatory and neuropathic pain.


Assuntos
Artrite Experimental , Azetidinas , Gânglios Espinais , Interleucina-6 , Janus Quinases , Neuralgia , Purinas , Pirazóis , Fator de Transcrição STAT3 , Transdução de Sinais , Sulfonamidas , Animais , Azetidinas/farmacologia , Azetidinas/uso terapêutico , Sulfonamidas/farmacologia , Sulfonamidas/uso terapêutico , Pirazóis/farmacologia , Pirazóis/uso terapêutico , Fator de Transcrição STAT3/metabolismo , Purinas/farmacologia , Artrite Experimental/metabolismo , Artrite Experimental/tratamento farmacológico , Gânglios Espinais/metabolismo , Gânglios Espinais/efeitos dos fármacos , Neuralgia/tratamento farmacológico , Neuralgia/metabolismo , Janus Quinases/metabolismo , Transdução de Sinais/efeitos dos fármacos , Camundongos , Interleucina-6/metabolismo , Masculino , Neurônios/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/patologia , Camundongos Endogâmicos DBA , Inflamação/metabolismo , Inflamação/tratamento farmacológico , Inibidores de Janus Quinases/farmacologia , Inibidores de Janus Quinases/uso terapêutico
6.
J Neurophysiol ; 110(7): 1511-24, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23615542

RESUMO

During locomotion, stepping over an obstacle under visual guidance is crucial to continuous safe walking. Studies of the role of the central nervous system in stepping movements have focused on cerebral cortical areas such as the primary motor cortex and posterior parietal cortex. There is speculation that the lateral cerebellum, which has strong anatomical connections with the cerebral cortex, also plays a key role in stepping movements over an obstacle, although this function of the lateral cerebellum has not yet been elucidated. Here we investigated the role of the lateral cerebellum during obstacle avoidance locomotion in rats with a lateral cerebellar lesion. A unilateral lesion in the lateral cerebellum did not affect limb movements during overground locomotion. Importantly, however, the lesioned animals showed overshooting of the toe trajectory specific to the leading forelimb ipsilateral to the lesion when stepping over an obstacle, and the peak toe position, in which the toe is maximally raised during stepping, shifted away from the upper edge of the obstacle. Recordings of EMG activity from elbow flexor and extensor muscles suggested that the overshooting toe trajectory in the ipsilateral leading forelimb possibly resulted from sustained elbow flexion and delayed elbow extension following prolonged activity of the biceps brachii. These results suggest that the lateral cerebellum specifically contributes to generating appropriate toe trajectories in the ipsilateral leading forelimb and to controlling related muscle activities in stepping over an obstacle, especially when accurate control of the distal extremity is achieved under visual guidance.


Assuntos
Cerebelo/fisiologia , Membro Anterior/fisiologia , Dedos do Pé/fisiologia , Caminhada/fisiologia , Animais , Fenômenos Biomecânicos , Membro Anterior/inervação , Masculino , Movimento , Músculo Esquelético/inervação , Músculo Esquelético/fisiologia , Ratos , Ratos Wistar , Dedos do Pé/inervação
7.
Biol Cybern ; 107(2): 201-16, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23430278

RESUMO

Obstacle avoidance during locomotion is essential for safe, smooth locomotion. Physiological studies regarding muscle synergy have shown that the combination of a small number of basic patterns produces the large part of muscle activities during locomotion and the addition of another pattern explains muscle activities for obstacle avoidance. Furthermore, central pattern generators in the spinal cord are thought to manage the timing to produce such basic patterns. In the present study, we investigated sensory-motor coordination for obstacle avoidance by the hindlimbs of the rat using a neuromusculoskeletal model. We constructed the musculoskeletal part of the model based on empirical anatomical data of the rat and the nervous system model based on the aforementioned physiological findings of central pattern generators and muscle synergy. To verify the dynamic simulation by the constructed model, we compared the simulation results with kinematic and electromyographic data measured during actual locomotion in rats. In addition, we incorporated sensory regulation models based on physiological evidence of phase resetting and interlimb coordination and examined their functional roles in stepping over an obstacle during locomotion. Our results show that the phase regulation based on interlimb coordination contributes to stepping over a higher obstacle and that based on phase resetting contributes to quick recovery after stepping over the obstacle. These results suggest the importance of sensory regulation in generating successful obstacle avoidance during locomotion.


Assuntos
Adaptação Fisiológica , Reação de Fuga/fisiologia , Membro Posterior/fisiologia , Locomoção/fisiologia , Modelos Biológicos , Desempenho Psicomotor/fisiologia , Animais , Fenômenos Biomecânicos , Simulação por Computador , Eletromiografia , Membro Posterior/inervação , Masculino , Músculo Esquelético/inervação , Fenômenos Fisiológicos Musculoesqueléticos , Ratos , Ratos Wistar
8.
Sci Rep ; 13(1): 14417, 2023 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-37660167

RESUMO

Metacognition is the ability to adaptively control one's behavior by referring to one's own cognitive processes. It is thought to contribute to learning in situations where there is insufficient information available from the environment. Information-seeking behavior is a type of metacognition in which one confirms the necessary information only when one does not have the necessary and sufficient information to accomplish a task. The rats were required to respond to a nose poke hole on one wall of the experimental box for a certain period of time and then move to the opposite side at a specific time. Unfortunately, they were unable to match the timing when responding to the hole on one side. Therefore, they had to look back and confirm that now was the right time. The results obtained by analyzing these looking-back movements using a motion capture system showed that this behavior occurred frequently and rapidly in situations of insufficient information, such as in the early stages of learning, but was hardly observed and became slower as learning progressed. These results suggest that rats can adjust their behavior in response to a lack of information more flexibly than previously assumed.


Assuntos
Comportamento de Busca de Informação , Metacognição , Animais , Ratos , Aprendizagem , Captura de Movimento , Movimento
9.
Sci Rep ; 13(1): 15805, 2023 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-37737224

RESUMO

Patients with cerebellar stroke display relatively mild ataxic gaits. These motor deficits often improve dramatically; however, the neural mechanisms of this improvement have yet to be elucidated. Previous studies in mouse models of gait ataxia, such as ho15J mice and cbln1-null mice, have shown that they have a dysfunction of parallel fiber-Purkinje cell synapses in the cerebellum. However, the effects of cerebellar stroke on the locomotor kinematics of wild-type mice are currently unknown. Here, we performed a kinematic analysis of gait ataxia caused by a photothrombotic stroke in the medial, vermal, and intermediate regions of the cerebellum of wild-type mice. We used the data and observations from this analysis to develop a model that will allow locomotive prognosis and indicate potential treatment regimens following a cerebellar stroke. Our analysis showed that mice performed poorly in a ladder rung test after a stroke. During walking on a treadmill, the mice with induced cerebellar stroke had an increased duty ratio of the hindlimb caused by shortened duration of the swing phase. Overall, our findings suggest that photothrombotic cerebellar infarction and kinematic gait analyses will provide a useful model for quantification of different types of acute management of cerebellar stroke in rodents.


Assuntos
Marcha Atáxica , Acidente Vascular Cerebral , Humanos , Animais , Camundongos , Acidente Vascular Cerebral/etiologia , Marcha , Caminhada , Camundongos Knockout
10.
Proc Natl Acad Sci U S A ; 106(9): 3525-30, 2009 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-19218432

RESUMO

In this study, we generated mice lacking the gene for G-substrate, a specific substrate for cGMP-dependent protein kinase uniquely located in cerebellar Purkinje cells, and explored their specific functional deficits. G-substrate-deficient Purkinje cells in slices obtained at postnatal weeks (PWs) 10-15 maintained electrophysiological properties essentially similar to those from WT littermates. Conjunction of parallel fiber stimulation and depolarizing pulses induced long-term depression (LTD) normally. At younger ages, however, LTD attenuated temporarily at PW6 and recovered thereafter. In parallel with LTD, short-term (1 h) adaptation of optokinetic eye movement response (OKR) temporarily diminished at PW6. Young adult G-substrate knockout mice tested at PW12 exhibited no significant differences from their WT littermates in terms of brain structure, general behavior, locomotor behavior on a rotor rod or treadmill, eyeblink conditioning, dynamic characteristics of OKR, or short-term OKR adaptation. One unique change detected was a modest but significant attenuation in the long-term (5 days) adaptation of OKR. The present results support the concept that LTD is causal to short-term adaptation and reveal the dual functional involvement of G-substrate in neuronal mechanisms of the cerebellum for both short-term and long-term adaptation.


Assuntos
Deleção de Genes , Aprendizagem/fisiologia , Doença dos Neurônios Motores/metabolismo , Doença dos Neurônios Motores/patologia , Proteínas do Tecido Nervoso/deficiência , Proteínas do Tecido Nervoso/metabolismo , Adaptação Biológica , Animais , Depressão/genética , Depressão/metabolismo , Depressão/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Doença dos Neurônios Motores/genética , Proteínas do Tecido Nervoso/genética , Transtornos da Motilidade Ocular/genética , Transtornos da Motilidade Ocular/metabolismo , Transtornos da Motilidade Ocular/patologia , Fatores de Tempo
11.
Front Bioeng Biotechnol ; 10: 825149, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35464733

RESUMO

Mammalian locomotion is generated by central pattern generators (CPGs) in the spinal cord, which produce alternating flexor and extensor activities controlling the locomotor movements of each limb. Afferent feedback signals from the limbs are integrated by the CPGs to provide adaptive control of locomotion. Responses of CPG-generated neural activity to afferent feedback stimulation have been previously studied during fictive locomotion in immobilized cats. Yet, locomotion in awake, behaving animals involves dynamic interactions between central neuronal circuits, afferent feedback, musculoskeletal system, and environment. To study these complex interactions, we developed a model simulating interactions between a half-center CPG and the musculoskeletal system of a cat hindlimb. Then, we analyzed the role of afferent feedback in the locomotor adaptation from a dynamic viewpoint using the methods of dynamical systems theory and nullcline analysis. Our model reproduced limb movements during regular cat walking as well as adaptive changes of these movements when the foot steps into a hole. The model generates important insights into the mechanism for adaptive locomotion resulting from dynamic interactions between the CPG-based neural circuits, the musculoskeletal system, and the environment.

12.
J Neurophysiol ; 106(1): 479-87, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21525375

RESUMO

Motor control is critical in daily life as well as in artistic and athletic performance and thus is the subject of intense interest in neuroscience. Mouse models of movement disorders have proven valuable for many aspects of investigation, but adequate methods for analyzing complex motor control in mouse models have not been fully established. Here, we report the development of a novel running-wheel system that can be used to evoke simple and complex stepping patterns in mice. The stepping patterns are controlled by spatially organized pegs, which serve as footholds that can be arranged in adjustable, ladder-like configurations. The mice run as they drink water from a spout, providing reward, while the wheel turns at a constant speed. The stepping patterns of the mice can thus be controlled not only spatially, but also temporally. A voltage sensor to detect paw touches is attached to each peg, allowing precise registration of footfalls. We show that this device can be used to analyze patterns of complex motor coordination in mice. We further demonstrate that it is possible to measure patterns of neural activity with chronically implanted tetrodes as the mice engage in vigorous running bouts. We suggest that this instrumented multipeg running wheel (which we name the Step-Wheel System) can serve as an important tool in analyzing motor control and motor learning in mice.


Assuntos
Teste de Esforço/instrumentação , Atividade Motora , Condicionamento Físico Animal/instrumentação , Corrida , Animais , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos ICR
13.
Sci Rep ; 11(1): 20362, 2021 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-34645901

RESUMO

Impairment of inferior olivary neurons (IONs) affects whole-body movements and results in abnormal gait and posture. Because IONs are activated by unpredicted motion rather than regular body movements, the postural dysfunction caused by ION lesions is expected to involve factors other than simple loss of feedback control. In this study, we measured the postural movements of rats with pharmacological ION lesions (IO rats) trained to stand on their hindlimbs. The coordination of body segments as well as the distribution and frequency characteristics of center of mass (COM) motion were analyzed. We determined that the lesion altered the peak properties of the power spectrum density of the COM, whereas changes in coordination and COM distribution were minor. To investigate how the observed properties reflected changes in the control system, we constructed a mathematical model of the standing rats and quantitatively identified the control system. We found an increase in linear proportional control and a decrease in differential and nonlinear control in IO rats compared with intact rats. The dystonia-like changes in body stiffness explain the nature of the linear proportional and differential control, and a disorder in the internal model is one possible cause of the decrease in nonlinear control.


Assuntos
Movimento , Núcleo Olivar/fisiopatologia , Equilíbrio Postural , Animais , Masculino , Núcleo Olivar/patologia , Ratos , Ratos Wistar
14.
Front Syst Neurosci ; 15: 785366, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34899202

RESUMO

Humans and animals learn the internal model of bodies and environments from their experience and stabilize posture against disturbances based on the predicted future states according to the internal model. We evaluated the mechanism of predictive control during standing, by using rats to construct a novel experimental system and comparing their behaviors with a mathematical model. In the experiments, rats (n = 6) that were standing upright using their hindlimbs were given a sensory input of light, after a certain period, the floor under them tilted backward. Initially, this disturbance induced a large postural response, including backward rotation of the center-of-mass angle and hindlimb segments. However, the rats gradually adjusted to the disturbance after experiencing 70 sequential trials, and a reduction in the amplitude of postural response was noted. We simulated the postural control of the rats under disturbance using an inverted pendulum model and model predictive control (MPC). MPC is a control method for predicting the future state using an internal model of the control target. It provides control inputs that optimize the predicted future states. Identification of the predictive and physiological parameters so that the simulation corresponds to the experiment, resulted in a value of predictive horizon (0.96 s) close to the interval time in the experiment (0.9-1.15 s). These results suggest that the rats predict posture dynamics under disturbance based on the timing of the sensory input and that the central nervous system provides plasticity mechanisms to acquire the internal model for MPC.

15.
Front Neurosci ; 13: 1288, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31849596

RESUMO

Central pattern generators (CPGs) in the spinal cord generate rhythmic neural activity and control locomotion in vertebrates. These CPGs operate under the control of sensory feedback that affects the generated locomotor pattern and adapt it to the animal's biomechanics and environment. Studies of the effects of afferent stimulation on fictive locomotion in immobilized cats have shown that brief stimulation of peripheral nerves can reset the ongoing locomotor rhythm. Depending on the phase of stimulation and the stimulated nerve, the applied stimulation can either shorten or prolong the current locomotor phase and the locomotor cycle. Here, we used a mathematical model of a half-center CPG to investigate the phase-dependent effects of brief stimulation applied to CPG on the CPG-generated locomotor oscillations. The CPG in the model consisted of two half-centers mutually inhibiting each other. The rhythmic activity in each half-center was based on a slowly inactivating, persistent sodium current. Brief stimulation was applied to CPG half-centers in different phases of the locomotor cycle to produce phase-dependent changes in CPG activity. The model reproduced several results from experiments on the effect of afferent stimulation of fictive locomotion in cats. The mechanisms of locomotor rhythm resetting under different conditions were analyzed using dynamic systems theory methods.

16.
Front Neurosci ; 13: 1337, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-32009870

RESUMO

Changing gait is crucial for adaptive and smooth animal locomotion. Although it remains unclear what makes animals decide on a specific gait, energy efficiency is an important factor. It has been reported that the relationship of oxygen consumption with speed is U-shaped for each horse gait and that different gaits have different speeds at which oxygen consumption is minimized. This allows the horse to produce energy-efficient locomotion in a wide speed range by changing gait. However, the underlying mechanisms causing oxygen consumption to be U-shaped and the speeds for the minimum consumption to be different between different gaits are unclear. In the present study, we used a neuromusculoskeletal model of the rat to examine the mechanism from a dynamic viewpoint. Specifically, we constructed the musculoskeletal part of the model based on empirical anatomical data on rats and the motor control model based on the physiological concepts of the spinal central pattern generator and muscle synergy. We also incorporated the posture and speed regulation models at the levels of the brainstem and cerebellum. Our model achieved walking through forward dynamic simulation, and the simulated joint kinematics and muscle activities were compared with animal data. Our model also achieved trotting by changing only the phase difference of the muscle-synergy-based motor commands between the forelimb and hindlimb. Furthermore, the speed of each gait varied by changing only the extension phase duration and amplitude of the muscle synergy-based motor commands and the reference values for the regulation models. The relationship between cost of transport (CoT) and speed was U-shaped for both the generated walking and trotting, and the speeds for the minimum CoT were different for the two gaits, as observed in the oxygen consumption of horses. We found that the resonance property and the posture and speed regulations contributed to the CoT shape and difference in speeds for the minimum CoT. We further discussed the energy efficiency of gait based on the simulation results.

17.
Nat Neurosci ; 6(8): 869-76, 2003 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-12833050

RESUMO

Previous gene knockout studies have shown that the orphan glutamate receptor delta2 (GluRdelta2) is critically involved in synaptogenesis between parallel fibers and Purkinje cells during development. However, the precise function of GluRdelta2 and whether it is functional in the mature cerebellum remain unclear. To address these issues, we developed an antibody specific for the putative ligand-binding region of GluRdelta2, and application of this antibody to cultured Purkinje cells induced AMPA receptor endocytosis, attenuated synaptic transmission and abrogated long-term depression. Moreover, injection of this antibody into the subarachnoidal supracerebellar space of adult mice caused transient cerebellar dysfunction, such as ataxic gait and poor performance in the rotorod test. These results indicate that GluRdelta2 is involved in AMPA receptor trafficking and cerebellar function in adult mice.


Assuntos
Cerebelo/fisiologia , Células de Purkinje/metabolismo , Receptores de AMPA/metabolismo , Receptores de Glutamato/fisiologia , Animais , Anticorpos/farmacologia , Células Cultivadas , Cerebelo/efeitos dos fármacos , Endocitose/efeitos dos fármacos , Depressão Sináptica de Longo Prazo/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Transporte Proteico , Receptores de Glutamato/imunologia , Transmissão Sináptica/efeitos dos fármacos
18.
Sci Rep ; 8(1): 6184, 2018 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-29670152

RESUMO

Patients and rodents with cerebellar damage display ataxic gaits characterized by impaired coordination of limb movements. Here, gait ataxia in mice with a null mutation of the gene for the cerebellin 1 precursor protein (cbln1-null mice) was investigated by kinematic analysis of hindlimb movements during locomotion. The Cbln1 protein is predominately produced and secreted from cerebellar granule cells. The cerebellum of cbln1-null mice is characterized by an 80% reduction in the number of parallel fiber-Purkinje cell synapses compared with wild-type mice. Our analyses identified prominent differences in the temporal parameters of locomotion between cbln1-null and wild-type mice. The cbln1-null mice displayed abnormal hindlimb movements that were characterized by excessive toe elevation during the swing phase, and by severe hyperflexion of the ankles and knees. When recombinant Cbln1 protein was injected into the cerebellum of cbln1-null mice, the step cycle and stance phase durations increased toward those of wild-type mice, and the angular excursions of the knee during a cycle period showed a much closer agreement with those of wild-type mice. These findings suggest that dysfunction of the parallel fiber-Purkinje cell synapses might underlie the impairment of hindlimb movements during locomotion in cbln1-null mice.


Assuntos
Ataxia Cerebelar/fisiopatologia , Cerebelo/efeitos dos fármacos , Cerebelo/fisiopatologia , Marcha/efeitos dos fármacos , Proteínas do Tecido Nervoso/administração & dosagem , Precursores de Proteínas/administração & dosagem , Animais , Ataxia Cerebelar/tratamento farmacológico , Ataxia Cerebelar/etiologia , Cerebelo/metabolismo , Modelos Animais de Doenças , Injeções , Locomoção/efeitos dos fármacos , Camundongos , Camundongos Knockout , Fenótipo , Resultado do Tratamento
19.
Sci Rep ; 8(1): 17341, 2018 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-30478405

RESUMO

To investigate the adaptive locomotion mechanism in animals, a split-belt treadmill has been used, which has two parallel belts to produce left-right symmetric and asymmetric environments for walking. Spinal cats walking on the treadmill have suggested the contribution of the spinal cord and associated peripheral nervous system to the adaptive locomotion. Physiological studies have shown that phase resetting of locomotor commands involving a phase shift occurs depending on the types of sensory nerves and stimulation timing, and that muscle activation patterns during walking are represented by a linear combination of a few numbers of basic temporal patterns despite the complexity of the activation patterns. Our working hypothesis was that resetting the onset timings of basic temporal patterns based on the sensory information from the leg, especially extension of hip flexors, contributes to adaptive locomotion on the split-belt treadmill. Our hypothesis was examined by conducting forward dynamic simulations using a neuromusculoskeletal model of a rat walking on a split-belt treadmill with its hindlimbs and by comparing the simulated motions with the measured motions of rats.


Assuntos
Membro Posterior/fisiologia , Músculo Esquelético/fisiologia , Caminhada/fisiologia , Animais , Fenômenos Biomecânicos , Teste de Esforço/métodos , Articulações/fisiologia , Masculino , Modelos Biológicos , Postura/fisiologia , Ratos Wistar , Medula Espinal/fisiologia
20.
J Orthop Surg (Hong Kong) ; 26(2): 2309499018768017, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29661110

RESUMO

PURPOSE: Joint pain is the most common symptom of osteoarthritis (OA); however, its mechanism remains unclarified. The present study investigated hindlimb motion during locomotion on the treadmill using a three-dimensional (3D) motion analysis system with high-speed cameras to evaluate whether this method can be used as an indication of joint pain in a mouse model of surgically induced OA. METHODS: We resected the medial meniscus and medial collateral ligament in 8-week old C57BL/6 male mice and performed locomotion recording 6 months post-operatively. Additionally, we performed the same recording after oral administration of the selective cyclooxygenase-2 inhibitor to determine whether alteration of the parameters were associated with joint pain. RESULTS: OA development, characterized by cartilage degeneration and osteophyte formation, was markedly enhanced in the OA group. There was no significant difference between the sham and OA groups in basic gait parameters, including stance duration, swing duration and gait cycle. However, when we divided the gait cycle into four phases and calculated the joint ranges of motion in each phase, the range of motion of the knee joint during the stepping-in phase and the swing duration were significantly decreased in the OA group. These significant differences between the sham and OA groups were diminished by the oral administration of a selective cyclooxygenase-2 inhibitor to the OA group. CONCLUSION: The present method may be useful to evaluate joint pain in experimental mice and contribute to elucidating the molecular mechanisms of pain in the OA knee joint in combination with genetically modified mice.


Assuntos
Marcha/fisiologia , Membro Posterior/fisiopatologia , Osteoartrite do Joelho/complicações , Osteoartrite do Joelho/fisiopatologia , Animais , Modelos Animais de Doenças , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Amplitude de Movimento Articular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA