Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int Immunopharmacol ; 138: 112586, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38955030

RESUMO

Nimodipine, a calcium antagonist, exert beneficial neurovascular protective effects in clinic. Recently, Calcium channel blockers (CCBs) was reported to protect against liver fibrosis in mice, while the exact effects of Nimodipine on liver injury and hepatic fibrosis remain unclear. In this study, we assessed the effect of nimodipine in Thioacetamide (TAA)-induced liver fibrosis mouse model. Then, the collagen deposition and liver inflammation were assessed by HE straining. Also, the frequency and phenotype of NK cells, CD4+T and CD8+T cells and MDSC in liver and spleen were analyzed using flow cytometry. Furthermore, activation and apoptosis of primary Hepatic stellate cells (HSCs) and HSC line LX2 were detected using α-SMA staining and TUNEL assay, respectively. We found that nimodipine administration significantly attenuated liver inflammation and fibrosis. And the increase of the numbers of hepatic NK and NKT cells, a reversed CD4+/CD8+T ratio, and reduced the numbers of MDSC were observed after nimodipine treatment. Furthermore, nimodipine administration significantly decreased α-SMA expression in liver tissues, and increased TUNEL staining adjacent to hepatic stellate cells. Nimodipine also reduced the proliferation of LX2, and significantly promoted high level of apoptosis in vitro. Moreover, nimodipine downregulated Bcl-2 and Bcl-xl, simultaneously increased expression of JNK, p-JNK, and Caspase-3. Together, nimodipine mediated suppression of growth and fibrogenesis of HSCs may warrant its potential use in the treatment of liver fibrosis.

2.
NPJ Vaccines ; 9(1): 22, 2024 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-38310094

RESUMO

Here we report on the development and comprehensive evaluations of an mRNA vaccine for chronic hepatitis B (CHB) treatment. In two different HBV carrier mouse models generated by viral vector-mediated HBV transfection (pAAV-HBV1.2 and rAAV8-HBV1.3), this vaccine demonstrates sufficient and persistent virological suppression, and robust immunogenicity in terms of induction of strong innate immune activation, high-level virus-specific antibodies, memory B cells and T cells. mRNA platform therefore holds prospects for therapeutic vaccine development to combat CHB.

3.
Int J Biol Sci ; 18(1): 154-165, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34975324

RESUMO

Chronic Hepatitis B virus (CHB) infection is a global public health problem. Oligodeoxynucleotides (ODNs) containing class C unmethylated cytosine-guanine dinucleotide (CpG-C) motifs may provide potential adjuvants for the immunotherapeutic strategy against CHB, since CpG-C ODNs stimulate both B cell and dendritic cell (DC) activation. However, the efficacy of CpG-C ODN as an anti-HBV vaccine adjuvant remains unclear. In this study, we demonstrated that CpG M362 (CpG-C ODN) as an adjuvant in anti-HBV vaccine (cHBV-vaccine) successfully and safely eliminated the virus in HBV-carrier mice. The cHBV-vaccine enhanced DC maturation both in vivo and in vitro, overcame immune tolerance, and recovered exhausted T cells in HBV-carrier mice. Furthermore, the cHBV-vaccine elicited robust hepatic HBV-specific CD8+ and CD4+ T cell responses, with increased cellular proliferation and IFN-γ secretion. Additionally, the cHBV-vaccine invoked a long-lasting follicular CXCR5+ CD8+ T cell response following HBV re-challenge. Taken together, CpG M362 in combination with rHBVvac cleared persistent HBV and achieved long-term virological control, making it a promising candidate for treating CHB.


Assuntos
Adjuvantes Imunológicos/farmacologia , Fosfatos de Dinucleosídeos/imunologia , Vacinas contra Hepatite B/farmacologia , Hepatite B Crônica/imunologia , Oligodesoxirribonucleotídeos/imunologia , Animais , Modelos Animais de Doenças , Masculino , Camundongos , Camundongos Endogâmicos C57BL
4.
Cell Mol Immunol ; 19(12): 1347-1360, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36369367

RESUMO

Chronic hepatitis B (CHB) infection remains a serious public health problem worldwide; however, the relationship between cholesterol levels and CHB remains unclear. We isolated peripheral blood mononuclear cells from healthy blood donors and CHB patients to analyze free cholesterol levels, lipid raft formation, and cholesterol metabolism-related pathways. Hepatitis B virus (HBV)-carrier mice were generated and used to confirm changes in cholesterol metabolism and cell-surface lipid raft formation in dendritic cells (DCs) in the context of CHB. Additionally, HBV-carrier mice were immunized with a recombinant HBV vaccine (rHBVvac) combined with lipophilic statins and evaluated for vaccine efficacy against HBV. Serum samples were analyzed for HBsAg, anti-HBs, and alanine aminotransferase levels, and liver samples were evaluated for HBV DNA and RNA and HBcAg. CHB reduced free cholesterol levels and suppressed lipid raft formation on DCs in patients with CHB and HBV-carrier mice, whereas administration of lipophilic statins promoted free cholesterol accumulation and restored lipid rafts on DCs accompanied by an enhanced antigen-presentation ability in vitro and in vivo. Cholesterol accumulation on DCs improved the rHBVvac-mediated elimination of serum HBV DNA and intrahepatic HBV DNA, HBV RNA, and HBcAg and promoted the rHBVvac-mediated generation and polyfunctionality of HBV-specific CD11ahi CD8αlo cells, induction of the development of memory responses against HBV reinfection, and seroconversion from HBsAg to anti-HBs. The results demonstrated the important role of cholesterol levels in DC dysfunction during CHB, suggesting that strategies to increase cholesterol accumulation on DCs might enhance therapeutic vaccine efficacy against HBV and support development toward clinical CHB treatment.


Assuntos
Hepatite B Crônica , Hepatite B , Inibidores de Hidroximetilglutaril-CoA Redutases , Vacinas , Camundongos , Animais , Antígenos de Superfície da Hepatite B , Antígenos do Núcleo do Vírus da Hepatite B/uso terapêutico , DNA Viral , Leucócitos Mononucleares , Inibidores de Hidroximetilglutaril-CoA Redutases/uso terapêutico , Vírus da Hepatite B , Anticorpos Anti-Hepatite B , Células Dendríticas , Colesterol/uso terapêutico , RNA
5.
Adv Healthc Mater ; 11(12): e2102781, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35285581

RESUMO

In situ anti-tumor vaccination is an attractive type of cancer immunotherapy which relies on the effectiveness of dendritic cells (DCs) to engulf tumor antigens, become activated, and present antigens to T cells in lymphoid tissue. Here, a multifunctional nanocomplex based on calcium crosslinked polyaspartic acid conjugated to either a toll-like receptor (TLR)7/8 agonist or a photosensitizer is reported. Intratumoral administration of the nanocomplex followed by laser irradiation induces cell killing and hence generation of a pool of tumor-associated antigens, with concomitant promotion of DCs maturation and expansion of T cells in tumor-draining lymph nodes. Suppression of tumor growth is observed both at the primary site and at the distal site, thereby hinting at successful induction of an adaptive anti-tumor response. This strategy holds promise for therapeutic application in a pre-operative and post-operative setting to leverage to mutanome of the patient's own tumor to mount immunological memory to clear residual tumor cells and metastasis.


Assuntos
Vacinas Anticâncer , Neoplasias , Receptor 7 Toll-Like , Receptor 8 Toll-Like , Adjuvantes Imunológicos/uso terapêutico , Animais , Antígenos de Neoplasias , Cálcio , Vacinas Anticâncer/administração & dosagem , Células Dendríticas , Sistemas de Liberação de Medicamentos , Imunidade , Masculino , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Nanopartículas , Neoplasias/tratamento farmacológico , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Receptor 7 Toll-Like/agonistas , Receptor 8 Toll-Like/agonistas , Vacinação
6.
Adv Healthc Mater ; 11(12): e2102739, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35306756

RESUMO

Cancer immunotherapy is revolutionary in oncology and hematology. However, a low response rate restricts the clinical benefits of this therapy owing to inadequate T lymphocyte infiltration and low delivery efficiency of immunotherapeutic drugs. Herein, an intelligent nanovehicle (folic acid (FA)/1-(4-(aminomethyl) benzyl)-2-butyl-1H-imidazo[4,5-c]quinolin-4-amine (IMDQ)-oxaliplatin (F/IMO)@CuS) armed with multifunctional navigation is designed for the accurate delivery of cargoes to tumor cells and dendritic cells (DCs), respectively. The nanovehicle is based on a near infrared-responsive inorganic CuS nanoparticles, acting as a photosensitizer and carrier of the chemotherapeutic agent oxaliplatin, and enters tumor cells owing to the presence of folic acid on the surface of CuS upon intratumoral injection. Furthermore, a toll-like receptor (TLR) 7/8 agonist-conjugated polymer, anchored on the surface of CuS, is modified with mannose to bind with DCs in the tumor microenvironment. Upon exposure to laser irradiation, nanovehicles disassemble, releasing oxaliplatin, to ablate tumor cells and amplify immunogenic cell death in combination with photothermal therapy. Mannose-modified polymer-TLR7/8 agonist conjugates are subsequently exposed, leading to the activation of DCs and proliferation of T cells. Collectively, these intelligent nanovehicles reduce tumor burden, exert a robust antitumor immune response, and generate long-term immune protection to prevent tumor recurrence.


Assuntos
Nanopartículas , Neoplasias , Adjuvantes Imunológicos , Linhagem Celular Tumoral , Ácido Fólico , Humanos , Morte Celular Imunogênica , Imunoterapia , Manose , Neoplasias/tratamento farmacológico , Oxaliplatina/farmacologia , Polímeros , Receptor 7 Toll-Like/agonistas , Microambiente Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA