Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
Small ; 19(50): e2304808, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37501314

RESUMO

The synthesis of efficient and highly selective catalysts and rational reactor design play decisive roles in the industrial application of the electrocatalytic carbon dioxide reduction reaction (CO2 RR). In this study, a dual-metal-organic framework (MOF) copper-based catalytic electrode is designed and prepared in one step by in situ synthesis on a foamed copper substrate. The MOF-on-MOF structure can effectively inhibit the generation of H2 and CO, and further enhance the selectivity of HCOOH. Furthermore, by using cheap and durable poly(tetrafluoroethylene) (PTFE) instead of an expensive and fragile GDE, the optimized reactor design improves the stability and durability of the gas channel and the replaceability of the electrode. The structure-optimized reactor has a maximum Faradaic efficiency of 89.2% in neutral medium, and an average current density of 26.1 mA cm-2 in the flow cell, which has comparable performance to a GDE and can continue to operate stably. The use of PTFE improves the service life of the gas mass transfer channel, and the independent catalytic electrode can provide good catalytic efficiency. These results provide new insights into the reaction mechanism of structurally recombined double MOFs and PTFE-optimized CO2 RR reactor designs, providing technical support for the practical industrial application of the CO2 RR.

2.
Environ Sci Technol ; 57(36): 13710-13720, 2023 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-37639499

RESUMO

The efficiency of persulfate-assisted advanced oxidation processes (PS-AOPs) in degrading organic pollutants is affected by the electron-donating capability of organic substances present in the water source. In this study, we systematically investigate the electron-donating capacity (EDC) difference between groundwater and surface water and demonstrate the dependence of removal efficiency on the EDC of target water by PS-AOPs with carbon nanotubes (CNTs) as a catalyst. Laboratory analyses and field experiments reveal that the CNT/PS system exhibits higher performance in organic pollutant removal in groundwater with a high concentration of phenols, compared to surface water, which is rich in quinones. We attribute this disparity to the selective electron transfer pathway induced by potential difference between PS-CNT and organic substance-CNT intermediates, which preferentially degrade organic substances with stronger electron-donating capability. This study provides valuable insights into the inherent selective removal mechanism and application scenarios of electron transfer process-dominated PS-AOPs for water treatment based on the electron-donating capacity of organic pollutants.


Assuntos
Poluentes Ambientais , Água Subterrânea , Nanotubos de Carbono , Elétrons , Oxirredução
3.
Environ Res ; 237(Pt 2): 116954, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37619629

RESUMO

Understanding the assembly and turnover of microbial communities is crucial for gaining insights into the diversity and functioning of lake ecosystems, a fundamental and central issue in microbial ecology. The ecosystem of Taihu Lake has been significantly jeopardized due to urbanization and industrialization. In this study, we examined the diversity, assembly, and turnover of bacterial and fungal communities in Taihu Lake sediment. The results revealed strong bacterial stochasticity and fast fungal turnover in the sediment. Significant heterogeneity was observed among all sediment samples in terms of environmental factors, especially ORP, TOC, and TN, as well as microbial community composition and alpha diversity. For instance, the fungal richness index exhibited an approximate 3-fold variation. Among the environmental factors, TOC, TN, and pH had a more pronounced influence on the bacterial community composition compared to the fungal community composition. Interestingly, species replacement played a dominant role in microbial beta diversity, with fungi exhibiting a stronger pattern. In contrast, stochastic processes governed the community assembly of both bacteria and fungi, but were more pronounced for bacteria (R2 = 0.7 vs. 0.5). These findings deepen the understanding of microbial assembly and turnover in sediments under environmental stress and provide essential insights for maintaining the multifunctionality of lake ecosystems.

4.
J Environ Sci (China) ; 124: 117-129, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36182122

RESUMO

In this study, a modified continuous-flow nitrifying reactor was successfully operated for rapid cultivation of micro-granules and achieving robust nitritation. Results showed that sludge granulation with mean size of ca. 100 µm was achieved within three weeks by gradually increasing settling velocity-based selection pressure from 0.48 to 0.9 m/hr. Though Nitrospira like nitrite-oxidizing bacteria (NOB) were enriched in the micro-granules with a ratio between ammonia-oxidizing bacteria (AOB) and NOB of 5.7%/6.5% on day 21, fast nitritation was achieved within one-week by gradually increasing of influent ammonium concentration (from 50 to 200 mg/L). Maintaining ammonium in-excess was the key for repressing NOB in the micro-granules. Interestingly, when the influent ammonium concentration switched back to 50 mg/L still with the residual ammonium of 15-25 mg/L, the nitrite accumulation efficiency increased from 90% to 98%. Experimental results suggested that the NOB repression was intensified by both oxygen and nitrite unavailability in the inner layers of micro-granules. Unexpectedly, continuous operation with ammonium in excess resulted in overproduction of extracellular polysaccharides and overgrowth of some bacteria (e.g., Nitrosomonas, Arenimonas, and Flavobacterium), which deteriorated the micro-granule stability and drove the micro-granules aggregation into larger ones with irregular morphology. However, efficient nitritation was stably maintained with extremely high ammonium oxidation potential (> 50 mg/g VSS/hr) and nearly complete washout of NOB was obtained. This suggested that smooth and spherical granule was not a prerequisite for achieving NOB wash-out and maintaining effective nitritation in the granular reactor. Overall, the micro-granules exhibited a great practical potential for high-rate nitritation.


Assuntos
Compostos de Amônio , Nitritos , Amônia , Bactérias , Reatores Biológicos/microbiologia , Nitrogênio , Oxirredução , Oxigênio/análise , Esgotos/microbiologia
5.
Environ Sci Technol ; 56(4): 2665-2676, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35077141

RESUMO

Selective removal of organic pollutants by advanced oxidation methods has been receiving increasing attention for environmental remediation. In this study, a novel catalyst, which can selectively oxidize phenolic compounds (PCs) based on their hydrophobicity, composed of metal-organic-framework-derived Fe/Fe3O4 and three-dimensional reduced graphene oxide (rGOF) is designed for peroxydisulfate (PDS) activation. This heterogeneous PDS activation system can completely degrade hydrophobic PCs within 30 min. By investigating the hydrophobic properties of eight representative PCs, a positive correlation between the hydrophobicity of PC and the reaction kinetics is reported for the first time. The selective removal stems from the strong interaction between highly hydrophobic PCs and the catalyst. Moreover, the mechanism investigation shows that the degradation reaction is triggered by interface reactive oxygen species (ROS). Our study reveals that the selective degradation of organic pollutants by PDS activation depends on the hydrophilic and hydrophobic properties of the pollutant and catalyst. The reported results provide new insights into a highly selective and efficient PDS activation system for organic pollutant removal.


Assuntos
Poluentes Ambientais , Poluentes Químicos da Água , Catálise , Interações Hidrofóbicas e Hidrofílicas , Oxirredução , Fenóis , Espécies Reativas de Oxigênio , Poluentes Químicos da Água/análise
6.
Biodegradation ; 33(1): 45-58, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34727273

RESUMO

Partial nitritation is necessary for the implementation of the mainstream anammox (anaerobic ammonium oxidation) process in wastewater treatment plants. However, the difficulty in outcompeting nitrite-oxidizing bacteria (NOB) at mainstream conditions hinders the performance of partial nitritation. The present work aimed to develop a high-rate partial nitritation process for low-ammonium wastewater treatment at low temperatures by seeding aerobic granules. Experimental results suggested that both stratified structure of nitrifiers developed in the granules and sufficient residual ammonium concentration (18-35 mg N L-1) in the bulk liquid contributed to efficient NOB repression. With the hydraulic retention time progressively shortened from 1.0 to 0.17 h, the influent nitrogen loading rate of the partial nitritation process reached 6.8 ± 0.4 kg N m-3 d-1 even at 10-15 °C. The high concentration (7.5 gVSS L-1) and activity (0.48 g N g-1 VSS d-1 at 11 °C) of granular sludge made the reactor possess an overcapacity evaluated by the ratio between the actual ammonium oxidation rate of the granules and their maximum potential. The overcapacity helped the reactor to face the adverse effect of decreasing temperatures. Overall, this work indicated the great potential of applying aerobic granules to achieve high-rate partial nitritation at mainstream conditions. Moreover, anammox bacteria with a relative abundance of 2.8% was also identified in the partial nitritation granules at the end of this study, suggesting that the granules provided a habitable niche for anammox bacteria growth. Note that these results cannot fully relate to the treatment of real domestic/municipal wastewater, they are a source of important information increasing the knowledge about low temperature partial nitrification.


Assuntos
Compostos de Amônio , Esgotos , Bactérias , Biodegradação Ambiental , Reatores Biológicos/microbiologia , Nitritos/análise , Nitrogênio/análise , Oxirredução , Esgotos/microbiologia , Temperatura , Águas Residuárias/microbiologia
7.
J Environ Sci (China) ; 105: 11-21, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34130828

RESUMO

Effects of sludge age on volatile fatty acids (VFAs) production and Phosphorus (P) release during anaerobic acidification of waste activated sludge (WAS) were investigated. Sequencing batch reactors (SBR) fed with simulating domestic sewage were applied to produce WAS of different sludge ages, and batch tests were used for anaerobic acidification. The maximum dissolved total organic carbon, release of  PO43+-P, and accumulation of acetate (C2), propionate (C3), butyrate (C4), and valerate (C5) decreased by 56.2%, 55.8%, 52.6%, 43.7%, 82.4% and 84.8%, respectively, as the sludge age of WAS increased from 5 to 40 days. Limited degradation of protein played a dominating role in decreasing DTOC and VFAs production. Moreover, the increase in molecular weight of organics and organic nitrogen content in the supernatant after acidification suggested that the refractory protein in WAS increased as sludge age extended. Although the production of C2, C3, C4, and C5 from WAS decreased as the sludge age increased, the proportions of C2 and C3 in VFAs increased, which might be due to the declined production of C5 from protein and the faded genus Dechlorobacter. Keeping sludge age of WAS at a relatively low level (<10 days) is more appropriate for anaerobic acidification of WAS as internal carbon sources and P resource.


Assuntos
Fósforo , Esgotos , Anaerobiose , Reatores Biológicos , Ácidos Graxos Voláteis , Fermentação , Concentração de Íons de Hidrogênio
8.
J Sep Sci ; 43(17): 3467-3473, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32627424

RESUMO

A novel heart-cutting two-dimensional liquid chromatography coupled with tandem mass spectrometry method was developed for quantitative analysis of pendimethalin residue in tobacco. The strategy of reversed phase liquid chromatography coupled with another reversed-phase liquid chromatography was employed for high column efficiency and excellent compatibility of mobile phase. In the first dimensional chromatography, a cyano column with methanol/water as the eluent was applied to separate pendimethalin from thousands of interference components in tobacco. By heart-cutting technique, which effectively removed interference components, the target compound was cut to the second dimensional C18 column for further separation. The pendimethalin residue was finally determined by the tandem mass spectrometry under multiple reaction monitoring reversed-phase liquid chromatography mode. Sample pretreatment of the new method was simplified, involving only extraction and filtration. Compared with traditional methodologies, the new method showed fairly high selectivity and sensitivity with almost no matrix interference. The limit of quantitation for pendimethalin was 1.21 ng/mL, whereas the overall recoveries ranged from 95.7 to 103.3%. The new method has been successfully applied to non-stop measure of 200 real samples, without contamination of ion source. Detection results of the samples agreed well with standard method.


Assuntos
Compostos de Anilina/análise , Nicotiana/química , Resíduos de Praguicidas/análise , Cromatografia Líquida , Espectrometria de Massas em Tandem
9.
Appl Microbiol Biotechnol ; 102(18): 8079-8091, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29987382

RESUMO

Increasing information supported that achieving high-rate mainstream deammonification through two-stage partial nitritation (PN)-anammox process should be a better option than through single-stage process. However, direct experimental evidence was limited so far. Herein, a two-stage PN-anammox process was successfully operated for nitrogen removal from low-strength wastewater in winter. Influent shift from synthetic wastewater to actual anaerobically pretreated sewage had little impact on the process performance. Promising nitrogen removal rates (NRRs) of 0.28-0.07 kg N m-3 d-1 with an average effluent concentration of 5.2 mg TN L-1 were achieved for the anaerobically pretreated sewage treatment at 15-7 °C. Moreover, nearly all the degradable COD in the pretreated sewage was steadily removed in the first-stage PN reactor, despite the varied influent COD concentrations of 22-78 mg L-1 and the operating temperature decrease, suggesting the positive role of the first-stage PN in protecting anammox bacteria. The low temperature seemingly was the only deterministic factor inhibiting the anammox activity, and hence made the anammox reaction to be the rate-limiting step for nitrogen removal in the two-stage PN-anammox process. Unexpectedly, nearly all the anammox bacteria remained active at low temperatures with the process actual anammox activity reached about 76-85% of their maximum potential, implying that higher NRRs would be easily realized through bioaugmentation or enrichment of anammox bacteria. Overall, the present investigation provides direct and valuable information for implementing the two-stage PN-anammox process to treat mainstream municipal wastewater. A control strategy was also proposed to optimize the operation of the two-stage mainstream deammonification process.


Assuntos
Amônia/isolamento & purificação , Compostos de Amônio/metabolismo , Bactérias/metabolismo , Nitritos/metabolismo , Purificação da Água/métodos , Anaerobiose , Biodegradação Ambiental , Análise da Demanda Biológica de Oxigênio , Temperatura Baixa , Oxirredução , Esgotos/química , Águas Residuárias/química , Águas Residuárias/microbiologia
10.
Sci Total Environ ; 912: 169313, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38123094

RESUMO

Anaerobic digestion (AD) is a promising technique for sludge treatment and resource recovery. Metals are very important components of sludge and can have substantial effects on its complex nature and microbial activity. However, systematic reviews have not addressed how metals in sludge affect AD and how they can be regulated to improve AD. This paper comprehensively reviews the effects of metals on the AD of sludge from both abiotic and biotic perspectives. First, we introduce the contents and basic characteristics (e.g., chemical forms) of intrinsic metals in sewage sludge. Then, we summarise the main mechanism by which metals influence sludge properties and the methods for removing metals and thus improving AD. Next, we analyze the effects of both intrinsic and exogenous metals on the enzymes and microbial communities involved in anaerobic bioconversion, focusing on the types, critical concentrations and valence states of the metals. Finally, we propose ideas for future research on the roles of metals in the AD of sludge. In summary, this review systematically clarifies the roles of metals in the AD of sludge and provides a reference for improving AD by regulating these metals.


Assuntos
Esgotos , Eliminação de Resíduos Líquidos , Esgotos/química , Anaerobiose , Eliminação de Resíduos Líquidos/métodos , Metano , Metais , Reatores Biológicos
11.
J Hazard Mater ; 463: 132852, 2024 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-37890386

RESUMO

This study investigated seasonal variations in spatial distribution, mobilization kinetic and toxicity risk of arsenic (As) in sediments of three representative ecological lakes in Lake Taihu. Results suggested that the bioavailability and mobility of As in sediments depended on the lake ecological types and seasonal changes. At the algal-type zones and macrophyte-type zones, elevated As concentrations were observed in April and July, while these occurred at the transition areas in July and October. The diffusion flux of soluble As ranged from 0.03 to 3.03 ng/cm2/d, indicating sediments acted as a source of As. Reductive dissolution of As-bearing iron/manganese-oxides was the key driver of sediment As remobilization. However, labile S(-II) caused by the degradations of algae and macrophytes buffered sediment As release at the algal-type and macrophyte-type zones. Furthermore, the resupply ratio was less than 1 at three ecological lakes, indicating the resupply As capacity of sediment solid phase was partially sustained case. The risk quotient values were higher than 1 at the algal-type zones and transition areas in July, thereby, the adverse effects of As should not be ignored. This suggested that it is urgently need to be specifically monitored and managed for As contamination in sediments across multi-ecological lakes.


Assuntos
Arsênio , Poluentes Químicos da Água , Arsênio/toxicidade , Arsênio/análise , Lagos , Estações do Ano , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/análise , Sedimentos Geológicos , Monitoramento Ambiental/métodos , China , Plantas
12.
Water Res ; 254: 121393, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38428236

RESUMO

The addition of exogenous materials is a commonly reported method for promoting the anaerobic digestion (AD) of sludge. However, most exogenous materials are nano-sized and their use encounters problems relating to a need for continuous replenishment, uncontrollability and non-recyclability. Here, magnetic porous microspheres (MPMs), which can be controlled by magnetic forces, were prepared and used to enhance the methanogenesis of sludge. It was observed that the MPMs were spherical particles with diameters of approximately 100 µm and had a stable macroporous hybrid structure of magnetic cores and polymeric shells. Furthermore, the MPMs had good magnetic properties and a strong solid-liquid interfacial electron transfer ability, suggesting that MPMs are excellent carriers for methanogenic consortia. Experimental results showed that the addition of MPMs increased methane production and the proportion of methane in biogas from AD by 100.0 % and 21.2 %, respectively, indicating the MPMs notably enhanced the methanogenesis of sludge. Analyses of variations in key enzyme activities and electron transfer in sludge samples with and without MPMs in AD revealed that the MPMs significantly enhanced the activities of key enzymes involved in hydrolysis, acidification and methanation. This was achieved mainly by enhancing the extracellular electron transfer to strengthen the proton motive force on the cell membrane, which provides more energy generation for methanogenic metabolism. A careful examination of the variations in the morphology, pore structure and magnetism of the MPMs before and after AD revealed that the MPMs increased the prevalence of many highly active anaerobes, and that this did not weaken the magnetic performance. The microbial community structure and metatranscriptomic analysis further indicated that the acetotrophic methanogens (i.e., Methanosaeta) were mainly in a free state and that CO2-reducing methanogens (i.e., Methanolinea and Methanobacterium) mainly adhered to the MPMs. The above synergistic metabolism led to efficient methanogenesis, which indicates that the MPMs optimised the spatial ecological niche of methanogenic consortia. These findings provide an important reference for the development of magnetic porous materials promoting AD.


Assuntos
Metano , Esgotos , Esgotos/química , Anaerobiose , Microesferas , Porosidade , Metano/metabolismo , Fenômenos Magnéticos
13.
Water Res ; 261: 122022, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-39002417

RESUMO

Controllable and recyclable magnetic porous microspheres (MPMs) have been proposed as a means for enhancing the anaerobic digestion (AD) of sludge, as they do not require continuous replenishment and can serve as carriers for anaerobes. However, the effects of MPMs on the interfacial thermodynamics of sludge and the biological responses triggered by abiotic effects in AD systems remain to be clarified. Herein, the underlying mechanisms by which MPMs alter the solid-liquid interface of sludge to drive methanogenesis were investigated. A significant increase in the contents of 13C and 2H (D) in methane molecules was observed in the presence of MPMs, suggesting that MPMs might enhance the CO2-reduction methanogenesis and participation of water in methane generation. Experimental results demonstrated that the addition of MPMs did not promote the anaerobic bioconversion of soluble organics for methanogenesis, suggesting that the enhanced methanogenesis and water participation were not achieved through promotion of the bioconversion of original liquid-state organics in sludge. Analyses of the capillary force, surface adhesion force, and interfacial proton-coupled electron transfer (PCET) of MPMs revealed that MPMs can enhance mass transfer, effective contact, and electron-proton transfer with sludge. These outcomes were confirmed by the statistical analyses of variations in the interfacial thermodynamics and PCET of sludge with and without MPMs during AD. It was thus proposed that the MPMs enhanced the PCET of sludge and PCET-driven release of protons from water by promoting the interfacial Lewis acid-base interactions of sludge, thereby resulting in the enrichment of free and attached methanogenic consortia and the high energy-conserving metabolic cooperation. This proposition was further confirmed by identifying the predominant syntrophic partners, suggesting that PCET-based efficient methanogenesis was attributable to the enrichment of genomes harbouring CO2-reducing pathway and genes encoding water-mediated proton transfer. These findings offer new insights into how substrate properties can be altered by exogenous materials to enable highly efficient methanogenesis.


Assuntos
Metano , Microesferas , Esgotos , Termodinâmica , Metano/metabolismo , Porosidade , Anaerobiose
14.
Front Chem ; 11: 1160489, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37153523

RESUMO

Constructed wetlands (CWs) have been widely used in tailwater treatment. However, it is difficult to achieve considerable removal efficiency of nitrogen and phosphorus in tailwater solely by CWs-an efficient green wetland filler is also important. This study investigated 160 domestic sewage treatment facilities (DSTFs) in rural areas from two urban areas in Jiaxing for TP and NH3-N and found that TP and NH3-N concentrations in rural domestic sewage (RDS) in this plain river network are still high. Therefore, we selected a new synthetic filler (FA-SFe) to enhance nitrogen and phosphorus reduction, and we discuss the importance of filler in constructed wetlands. Experiments revealed the adsorption capacity of the new filler: the maximum adsorption amounts of TP and NH3-N reached 0.47 g m-2 d-1 and 0.91 g m-2 d-1, respectively. The application potential of FA-SFe was verified in actual wastewater treatment, with the removal rates of ammonia nitrogen and TP reaching 71.3% and 62.7%, respectively. This study provides a promising pathway for nitrogen and phosphorus removal from rural tailwaters.

15.
Huan Jing Ke Xue ; 44(6): 3270-3277, 2023 Jun 08.
Artigo em Zh | MEDLINE | ID: mdl-37309945

RESUMO

The adsorption performances of ammonia nitrogen (NH+4-N) in water by unmodified biochar are ineffective. In this study, nano zero-valent iron-modified biochar (nZVI@BC) was prepared to remove NH+4-N from water. The NH+4-N adsorption characteristics of nZVI@BC were investigated through adsorption batch experiments. The composition and structure characteristics of nZVI@BC were analyzed using scanning electron microscopy, energy spectrum analysis, BET-N2 surface area (SSA), X-ray diffraction, and FTIR spectra to explore the main adsorption mechanism of NH+4-N by nZVI@BC. The results showed that the composite synthesized at the iron to biochar mass ratio of 1:30 (nZVI@BC1/30) performed well in NH+4-N adsorption at 298 K. The maximum adsorption amount of nZVI@BC1/30 at 298 K was remarkably increased by 45.96% and reached 16.60 mg·g-1. The pseudo-second-order model and Langmuir model fitted well with the adsorption process of NH+4-N by nZVI@BC1/30. There was competitive adsorption between coexisting cations and NH+4-N, and the sequence of coexisting cations to the adsorption of NH+4-N by nZVI@BC1/30 was Ca2+> Mg2+> K+> Na+. The adsorption mechanism of NH+4-N by nZVI@BC1/30 could be mainly attributed to ion exchange and hydrogen bonding. In conclusion, nano zero-valent iron-modified biochar can improve the adsorption performance of NH+4-N and enhance the application potential of biochar in the field of nitrogen removal from water.

16.
Chemosphere ; 294: 133831, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35120951

RESUMO

Achieving mainstream nitritation with aerobic granules is attractive based on increasing evidence but generally treating artificial low-ammonium wastewater. Real municipal wastewater is much more complex in composition, the behavior of the nitritation granules would be different when treating real municipal wastewater. Herein, the response of nitritation granules to influent shift from artificial low-ammonium (35-40 mg/L) wastewater to anaerobically pre-treated municipal wastewater (MWWpre-treated) was investigated at low temperatures. Results showed that MWWpre-treated caused the outgrowth of filamentous bacteria on the granule surface and developed into finger-like structures, which in turn resulted in the decrease of the overall granular sludge settleability. Batch-tests and microbial analysis indicated the functional and microbial differentiation between the newly formed fluffy exterior and the original compact granule. The fluffy exterior was dominated by genus Flavobacterium (66.6%) and primarily functioned as COD removal, whereas the nitrifiers (mainly Nitrosomonas) were still located in the compact core and performed nitritation. Moreover, the heterotrophs-dominated fluffy exterior hindered the oxygen transfer towards nitrifiers located in the compact granule and thereby facilitated the stable NOB repression in the granule particularly at low temperatures (<10 °C). Finally, gradual recovery of the granular sludge morphology and settleability occurred after the influent reverted to synthetic low-ammonium wastewater. Overall, this work demonstrated that the feeding of MWWpre-treated only caused morphological changes of the nitritation granules, but its structural and functional stability could be maintained stably.


Assuntos
Compostos de Amônio , Águas Residuárias , Reatores Biológicos/microbiologia , Nitritos , Nitrogênio/análise , Oxirredução , Esgotos/química , Temperatura
17.
Chemosphere ; 307(Pt 4): 136151, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36028122

RESUMO

As a by-product of industry, waste iron scraps (WIS) are low-cost and widely available, which was potential for the development of iron-assisted anammox. In this study, the feasibility of adding WIS to enhance the nitrogen removal of the anammox process (also called WIS-assisted anammox) was demonstrated. Results indicated that the WIS-assisted anammox reactors performed a 15-35% higher nitrogen removal efficiency than that of the control. Compared to the sludge from the control, the sludge from the WIS-assisted anammox reactors had a higher iron content (78-113 g kg-1 SS) and a better specific anammox activity (10.8-15.5 mg N g-1 VSS h-1). The enhanced growth of the anammox bacteria (related to Ca. Kuenenia stuttgartiensis with 99% similarity) in the WIS-assisted anammox reactors was also confirmed by high-throughput sequencing and qPCR. Furthermore, the functional genes predicted by PICRUSt2 revealed a higher level of hydroxylamine oxidoreductase (hao)-like proteins expression of the biomass from the WIS-assisted anammox reactors, implying that the hydroxylamine-related anammox pathway was promoted. Additionally, the observation of cytoplasmic nitrate reductase (narG), copper-containing nitrite reductase (nirK), and nitric oxide reductase (norB) suggested that the introduction of WIS might promote the denitrification ability. This was correlated to the lower ΔNO3-/ΔNH4+ ratio observed in these WIS-assisted anammox reactors. Overall, the WIS-assisted anammox offers a sustainable nitrogen removal process for wastewater treatment with waste iron recycling.


Assuntos
Desnitrificação , Esgotos , Oxidação Anaeróbia da Amônia , Reatores Biológicos/microbiologia , Cobre , Hidroxilaminas , Ferro , Nitrito Redutases/metabolismo , Nitrogênio/metabolismo , Oxirredução , Esgotos/microbiologia , Águas Residuárias
18.
Bioresour Technol ; 357: 127344, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35605773

RESUMO

Media-supported biofilm is a powerful strategy for growth and enrichment of slow-growing microorganisms. In this study, a single-stage nitritation-anammox process treating low-strength wastewater was successfully started to investigate the biofilm development on porous polyurethane hydrogel carrier. Suspended biomass migration into the carrier and being entrapment by its internal interconnected micropores dominated the fast initial colonization stage. Both surface-attached growth and embedded growth of microbes occurred during the following accumulation stage. Fluorescence in situ hybridization analysis of mature biofilm indicated that ammonium-oxidizing bacteria located at the outer layers featured a surface-attached growth, while anammox microcolonies housed in the inner layers proliferated as an embedded-like growth. In this way, the growth rate of anammox bacteria (predominated by Candidatus Kuenenia) could be 0.079 d-1. The anammox potential of the biofilm reactor reached 1.65 ± 0.3 kg/m3/d within two months. This study provides novel insights into nitritation-anammox biofilm formation on the porous polyurethane hydrogel carrier.


Assuntos
Compostos de Amônio , Águas Residuárias , Amônia , Oxidação Anaeróbia da Amônia , Bactérias , Biofilmes , Reatores Biológicos/microbiologia , Desnitrificação , Hidrogéis , Hibridização in Situ Fluorescente , Nitrogênio , Oxirredução , Poliuretanos , Porosidade
19.
J Environ Sci (China) ; 23(6): 1020-6, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22066226

RESUMO

Exploration of biodemulsifiers has become a new research aspect. Using waste frying oils (WFOs) as carbon source to synthesize biodemulsifiers has a potential prospect to decrease production cost and to improve the application of biodemulsifiers in the oilfield. In this study, a demulsifying strain, Alcaligenes sp. S-XJ-1, was investigated to synthesize a biodemulsifier using waste frying oils as carbon source. It was found that the increase of initial pH of culture medium could increase the biodemulsifier yield but decrease the demulsification ratio compared to that using paraffin as carbon source. In addition, a biodemulsifier produced by waste frying oils and paraffin as mixed carbon source had a lower demulsification capability compared with that produced by paraffin or waste frying oil as sole carbon source. Fed-batch fermentation of biodemulsifier using waste frying oils as supplementary carbon source was found to be a suitable method. Mechanism of waste frying oils utilization was studied by using tripalmitin, olein and tristearin as sole carbon sources to synthesize biodemulsifier. The results showed saturated long-chain fatty acid was difficult for S-XJ-1 to utilize but could effectively enhance the demulsification ability of the produced biodemulsifier. Moreover, FT-IR result showed that the demulsification capability of biodemulsifiers was associated with the content of C=O group and nitrogen element.


Assuntos
Alcaligenes/metabolismo , Emulsificantes/química , Emulsificantes/metabolismo , Óleos/metabolismo , Carbono/química , Carbono/metabolismo , Fermentação , Concentração de Íons de Hidrogênio , Óleos/química , Petróleo/metabolismo , Poluentes do Solo/química , Poluentes do Solo/metabolismo
20.
Chemosphere ; 278: 130395, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33819889

RESUMO

In this study, a high-rate CANON (Complete Autotrophic Nitrogen-removal Over Nitrite) process was started up successfully by enhancing the in-situ enrichment of anammox bacteria in aerobic granules at conditions relevant for mainstream wastewater treatment. Firstly, to provide nitrite for anammox bacteria growth efficient nitrite-oxidizing bacteria (NOB) repression was rapidly achieved and stably maintained. Both low dissolved oxygen (DO) and ammonium concentrations ratio (DO/NH4+ <0.15) and selective washing-out of NOB-preferred smaller particles at short hydraulic retention time (HRT, 25-15 min) contributed to the NOB repression. Then the stepwise down-regulating DO concentrations from 2.8 to 1.2 mg/L enhanced the enrichment of anammox bacteria in the aerobic granules. The enriched anammox species was dominated by Ca. Brocadia sapporoensis with the estimated growth rate of 0.008-0.013 d-1 at 15 °C. Chloroflexi and Chlorobi-affiliated bacteria were also significantly enriched in the granules, which may benefit the anammox bacteria activity and growth. At the end of this study, the average total nitrogen removal rate and efficiency of the granular CANON process respectively reached 1.26 kg N·m-3·d-1 and 68% treating low-strength ammonium (∼50 mg N·L-1) wastewater under such aggressive conditions (DO = 0.8-1.5 mg/L, HRT< 1.0 h, and T = 15 °C). Overall, the aerobic granules provided a habitable niche for the proliferation and almost complete retention of the anammox bacteria. This study provides a roadmap for in-situ starting up of high-rate CANON process for mainstream wastewater treatment with aerobic granules as inoculum.


Assuntos
Compostos de Amônio , Reatores Biológicos , Bactérias , Nitritos , Nitrogênio , Oxirredução , Esgotos , Temperatura , Águas Residuárias
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA