Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Exp Dermatol ; 33(1): e14881, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37539924

RESUMO

Abnormal death of neutrophils and the subsequent ineffective clearance of cell fragments result in production of autoantigens that can lead to systemic lupus erythematosus (SLE). Excessive formation of neutrophil extracellular traps (NETs) can trigger the synthesis of pro-inflammatory cytokines such as type I interferons, leading to tissue damage and immune dysfunction in SLE patients. In this study, we found that a decrease in neutrophil counts in the peripheral blood was correlated with clinical parameters in SLE patients. Patients with low neutrophil counts had high renal activity index and chronicity index scores. NET formation and neutrophil autophagy in SLE patients were increased. The autophagy inhibitor hydroxychloroquine was shown to restrict NET formation. Using comprehensive bioinformatics analysis, we found that the expression of the autophagy-related gene, hypoxia-inducible factor 1A (HIF1A), was enhanced in peripheral neutrophils and in the renal glomeruli in SLE patients. Targeting HIF1A could be a potential therapeutic approach for SLE.


Assuntos
Armadilhas Extracelulares , Lúpus Eritematoso Sistêmico , Humanos , Neutrófilos/metabolismo , Autofagia , Biomarcadores/metabolismo
2.
Cell Biochem Biophys ; 2024 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-39033091

RESUMO

The effect of rehmannioside A (ReA) on systemic lupus erythematosus (SLE) is not clear and needs further study. In this study, SLE-related targets were obtained from the DisGeNet and GeneCards databases, while ReA-related targets were obtained from the SwissTarget and SuperPred databases. A protein-protein interaction network of intersected targets was constructed using the STRING platform. After selecting the intersected targets, GO and KEGG enrichment analyses were performed via the R package "clusterProfiler". The relationships between ReA and various core targets were assessed via molecular docking, and molecular dynamics simulation was conducted for optimal core protein-compound complexes obtained by molecular docking. The top five targets in the ranking of degree value were HSP90AA1, HIF1A, PIK3CA, MTOR, and TLR4. Significant biological processes mainly included response to oxidative stress and response to reactive oxygen species. The potential pathways of ReA in the treatment of SLE mainly focused on the PI3K-Akt signaling pathway, neutrophil extracellular trap formation, and Apoptosis. Molecular docking showed that ReA had the highest binding affinity for mTOR, suggesting that mTOR is a key target of ReA against SLE. Molecular dynamics simulations revealed good binding abilities between ReA and mTOR. In conclusion, ReA exerts its effects on SLE through multiple targets and pathways, with mTOR being a key target of ReA against SLE.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA