Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Adv Mater ; 35(45): e2303635, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37473433

RESUMO

The orientation of crystals on the substrate and the presence of defects are critical factors in electro-optic performance. However, technical approaches to guide the orientational crystallization of electro-optical thin films remain challenging. Here, a novel physical method called magnetic-field-assisted pulse laser annealing (MAPLA) for controlling the orientation of perovskite crystals on substrates is reported. By inducing laser recrystallization of perovskite crystals under a magnetic field and with magnetic nanoparticles, the optical and magnetic fields are found to guide the orientational gathering of perovskite units into nanoclusters, resulting in perovskite crystals with preferred lattice orientation in (110) and (220) perpendicular to the substrate. The perovskite crystals obtained by MAPLA exhibit significantly larger grain size and fewer defects compared to those from pulsed laser annealing (PLA) and traditional thermal annealing, resulting in improved carrier lifetime and mobility. Furthermore, MAPLA demonstrates enhanced device performance, increasing responsivity and detectivity by two times, and photocurrent by nearly three orders compared with PLA. The introduction of Fe2 O3 nanoparticles during MAPLA not only improves crystal size and orientation but also significantly enhances long-term stability by preventing Pb2+ reduction. The MAPLA method has great potential for fabricating many electro-optical thin films with desired device properties and stability.

2.
Nat Commun ; 12(1): 4879, 2021 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-34385428

RESUMO

The carriers' transportation between layers of two-dimensional (2D) perovskites is inhibited by dielectric confinement. Here, for the first time, we employ a femtosecond laser to introduce ultrafast shock pressure in the range of 0~15.45 GPa to reduce dielectric confinement by modulating the structure and exciton dynamics in a perovskite single crystal (PSCs), e.g. (F-PEA)2PbI4 (4-fluorophenethylammonium, F-PEA). The density functional theory (DFT) simulation and experimental results show that the inorganic framework distortion results in a bandgap reduction. It was found that the exciton-optical phonon coupling and free excitons (FEs) binding energy are minimized at 2.75 GPa shock pressure due to a reduction in dielectric confinement. The stability testing under various harsh light and humid thermal conditions shows that femtosecond laser shocking improves the stability of (F-PEA)2PbI4 PSCs. Femtosecond laser shock processing provides a new approach for regulating the structure and enhancing halide perovskite properties.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA