Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mikrochim Acta ; 191(3): 132, 2024 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-38351367

RESUMO

Bioaerosols are airborne suspensions of fine solid or liquid particles containing biological substances such as viruses, bacteria, cellular debris, fungal spores, mycelium, and byproducts of microbial metabolism. The global Coronavirus disease 2019 (COVID-19) pandemic and the previous emergence of severe acute respiratory syndrome (SARS), Middle East respiratory syndrome (MERS), and influenza have increased the need for reliable and effective monitoring tools for bioaerosols. Bioaerosol collection and detection have aroused considerable attention. Current bioaerosol sampling and detection techniques suffer from long response time, low sensitivity, and high costs, and these drawbacks have forced the development of novel monitoring strategies. Microfluidic technique is considered a breakthrough for high performance analysis of bioaerosols. In recent years, several emerging methods based on microfluidics have been developed and reported for collection and detection of bioaerosols. The unique advantages of microfluidic technique have enabled the integration of bioaerosol collection and detection, which has a higher efficiency over conventional methods. This review focused on the research progress of bioaerosol collection and detection methods based on microfluidic techniques, with special attention on virus aerosols and bacterial aerosols. Different from the existing reviews, this work took a unique perspective of the targets to be collected and detected in bioaerosols, which would provide a direct index of bioaerosol categories readers may be interested in. We also discussed integrated microfluidic monitoring system for bioaerosols. Additionally, the application of bioaerosol detection in biomedicine was presented. Finally, the current challenges in the field of bioaerosol monitoring are presented and an outlook given of future developments.


Assuntos
Microfluídica , Vírus , Aerossóis e Gotículas Respiratórios , Bactérias , Aerossóis/análise
2.
J Magn Reson Imaging ; 57(6): 1778-1787, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36165534

RESUMO

BACKGROUND: Preoperative assessment of the acquired resistance T790M mutation in patients with metastatic non-small cell lung cancer (NSCLC) based on brain metastasis (BM) is important for early treatment decisions. PURPOSE: To investigate preoperative magnetic resonance imaging (MRI)-based radiomics for assessing T790M resistance mutation after epidermal growth factor receptor (EGFR)-tyrosine kinase inhibitor (TKI) treatment in NSCLC patients with BM. STUDY TYPE: Retrospective. POPULATION: One hundred and ten primary NSCLC patients with pathologically confirmed BM and T790M mutation status assessment from two centers divided into primary training (N = 53), internal validation (N = 27), and external validation (N = 30) sets. FIELD STRENGTH/SEQUENCE: Contrast-enhanced T1-weighted (T1CE) and T2-weighted (T2W) fast spin echo sequences at 3.0 T. ASSESSMENT: Forty-five (40.9%) patients were T790M-positive and 65 (59.1%) patients were T790M-negative. The tumor active area (TAA) and peritumoral edema area (POA) of BM were delineated on pre-treatment T1CE and T2W images. Radiomics signatures were built based on features selected from TAA (RS-TAA), POA (RS-POA), and their combination (RS-Com) to assess the T790M resistance mutation after EGFR-TKI treatment. STATISTICAL TESTS: Receiver operating characteristic (ROC) curves were used to assess the capabilities of the developed RSs. The area under the ROC curves (AUC), sensitivity, and specificity were generated as comparison metrics. RESULTS: We identified two features (from TAA) and three features (from POA) that are highly associated with the T790M mutation status. The developed RS-TAA, RS-POA, and RS-Com showed good performance, with AUCs of 0.807, 0.807, and 0.864 in the internal validation, and 0.783, 0.814, and 0.860 in the external validation sets, respectively. DATA CONCLUSION: Pretreatment brain MRI of NSCLC patients with BM might effectively detect the T790M resistance mutation, with both TAA and POA having important values. The multi-region combined radiomics signature may have potential to be a new biomarker for assessing T790M mutation. LEVEL OF EVIDENCE: 3 TECHNICAL EFFICACY: Stage 2.


Assuntos
Neoplasias Encefálicas , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/diagnóstico por imagem , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Receptores ErbB/genética , Mutação , Estudos Retrospectivos , Resistencia a Medicamentos Antineoplásicos/genética , Inibidores de Proteínas Quinases/uso terapêutico , Inibidores de Proteínas Quinases/farmacologia , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética , Imageamento por Ressonância Magnética
3.
J Magn Reson Imaging ; 58(6): 1838-1847, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37144750

RESUMO

BACKGROUND: Preoperative assessment of epidermal growth factor receptor (EGFR) status, response to EGFR-tyrosine kinase inhibitors (TKI) and development of T790M mutation in non-small cell lung carcinoma (NSCLC) patients with brain metastases (BM) is important for clinical decision-making, while previous studies were only based on the whole BM. PURPOSE: To investigate values of brain-to-tumor interface (BTI) for determining the EGFR mutation, response to EGFR-TKI and T790M mutation. STUDY TYPE: Retrospective. POPULATION: Two hundred thirty patients from Hospital 1 (primary cohort) and 80 patients from Hospital 2 (external validation cohort) with BM and histological diagnosis of primary NSCLC, and with known EGFR status (biopsy) and T790M mutation status (gene sequencing). FIELD STRENGTH/SEQUENCE: Contrast-enhanced T1-weighted (T1CE) and T2-weighted (T2W) fast spin echo sequences at 3.0T MRI. ASSESSMENT: Treatment response to EGFR-TKI therapy was determined by the Response Evaluation Criteria in Solid Tumors. Radiomics features were extracted from the 4 mm thickness BTI and selected by least shrinkage and selection operator regression. The selected BTI features and volume of peritumoral edema (VPE) were combined to construct models using logistic regression. STATISTICAL TESTS: The performance of each radiomics model was evaluated using the area under the receiver operating characteristic (ROC) curve (AUC). RESULTS: A total of 7, 3, and 3 features were strongly associated with the EGFR mutation status, response to EGFR-TKI and T790M mutation status, respectively. The developed models combining BTI features and VPE can improve the performance than those based on BTI features alone, generating AUCs of 0.814, 0.730, and 0.774 for determining the EGFR mutation, response to EGFR-TKI and T790M mutation, respectively, in the external validation cohort. DATA CONCLUSION: BTI features and VPE were associated with the EGFR mutation status, response to EGFR-TKI and T790M mutation status in NSCLC patients with BM. EVIDENCE LEVEL: 3 Technical Efficacy: Stage 2.


Assuntos
Neoplasias Encefálicas , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/diagnóstico por imagem , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Mutação , Estudos Retrospectivos , Receptores ErbB/genética , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Resistencia a Medicamentos Antineoplásicos/genética , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/tratamento farmacológico , Imageamento por Ressonância Magnética , Encéfalo/patologia
4.
Acta Radiol ; 64(2): 456-466, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35354318

RESUMO

BACKGROUND: Preoperative prediction of microvascular invasion (MVI) in hepatocellular carcinoma (HCC) is essential in obtaining a successful surgical treatment, in decreasing recurrence, and in improving survival. PURPOSE: To investigate the value of multiparametric magnetic resonance imaging (MRI)-based radiomics in the prediction of peritumoral MVI in HCC. MATERIAL AND METHODS: A total of 102 patient with pathologically proven HCC after surgical resection from June 2014 to March 2018 were enrolled in this retrospective study. Histological analysis of resected specimens confirmed positive MVI in 48 patients and negative MVI in 54 patients. Radiomics features were extracted from four MRI sequences and selected with the least absolute shrinkage and selection operator (LASSO) regression and used to analyze the tumoral and peritumoral regions for MVI. Univariate logistic regression was employed to identify the most important clinical factors, which were integrated with the radiomics signature to develop a nomogram. RESULTS: In total, 11 radiomics features were selected and used to build the radiomics signature. The serum level of alpha-fetoprotein was identified as the clinical factor with the highest predictive value. The developed nomogram achieved the highest AUC in predicting MVI status. The decision curve analysis confirmed the potential clinical utility of the proposed nomogram. CONCLUSION: The multiparametric MRI-based radiomics nomogram is a promising tool for the preoperative diagnosis of peritumoral MVI in HCCs and helps determine the appropriate medical or surgical therapy.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Imageamento por Ressonância Magnética Multiparamétrica , Humanos , Carcinoma Hepatocelular/diagnóstico por imagem , Carcinoma Hepatocelular/cirurgia , Neoplasias Hepáticas/diagnóstico por imagem , Neoplasias Hepáticas/patologia , Estudos Retrospectivos , Invasividade Neoplásica/patologia , Imageamento por Ressonância Magnética/métodos
5.
J Magn Reson Imaging ; 54(2): 497-507, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33638577

RESUMO

BACKGROUND: Preoperative prediction of epidermal growth factor receptor (EGFR) mutation status in patients with spinal bone metastases (SBM) from primary lung adenocarcinoma is potentially important for treatment decisions. PURPOSE: To develop and validate multiparametric magnetic resonance imaging (MRI)-based radiomics methods for preoperative prediction of EGFR mutation based on MRI of SBM. STUDY TYPE: Retrospective. POPULATION: A total of 97 preoperative patients with lumbar SBM from lung adenocarcinoma (77 in training set and 20 in validation set). FIELD STRENGTH/SEQUENCE: T1-weighted, T2-weighted, and T2-weighted fat-suppressed fast spin echo sequences at 3.0 T. ASSESSMENT: Radiomics handcrafted and deep learning-based features were extracted and selected from each MRI sequence. The abilities of the features to predict EGFR mutation status were analyzed and compared. A radiomics nomogram was constructed integrating the selected features. STATISTICAL TESTS: The Mann-Whitney U test and χ2 test were employed for evaluating associations between clinical characteristics and EGFR mutation status for continuous and discrete variables, respectively. Least absolute shrinkage and selection operator was used for selection of predictive features. Sensitivity (SEN), specificity (SPE), and area under the receiver operating characteristic curve (AUC) were used to evaluate the ability of radiomics models to predict the EGFR mutation. Calibration and decision curve analysis (DCA) were performed to assess and validate nomogram results. RESULTS: The radiomics signature comprised five handcrafted and one deep learning-based features and achieved good performance for predicting EGFR mutation status, with AUCs of 0.891 (95% confidence interval [CI], 0.820-0.962, SEN = 0.913, SPE = 0.710) in the training group and 0.771 (95% CI, 0.551-0.991, SEN = 0.750, SPE = 0.875) in the validation group. DCA confirmed the potential clinical usefulness of the radiomics models. DATA CONCLUSION: Multiparametric MRI-based radiomics is potentially clinical valuable for predicting EGFR mutation status in patients with SBM from lung adenocarcinoma. LEVEL OF EVIDENCE: 3 TECHNICAL EFFICACY: 2.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Imageamento por Ressonância Magnética Multiparamétrica , Adenocarcinoma de Pulmão/diagnóstico por imagem , Adenocarcinoma de Pulmão/genética , Receptores ErbB/genética , Humanos , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/genética , Imageamento por Ressonância Magnética , Mutação , Estudos Retrospectivos
6.
Molecules ; 25(22)2020 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-33202954

RESUMO

In recent years, the microfluidic technique has been widely used in the field of tissue engineering. Possessing the advantages of large-scale integration and flexible manipulation, microfluidic devices may serve as the production line of building blocks and the microenvironment simulator in tissue engineering. Additionally, in microfluidic technique-assisted tissue engineering, various biomaterials are desired to fabricate the tissue mimicking or repairing structures (i.e., particles, fibers, and scaffolds). Among the materials, gelatin methacrylate (GelMA)-based hydrogels have shown great potential due to their biocompatibility and mechanical tenability. In this work, applications of GelMA hydrogels in microfluidic technique-assisted tissue engineering are reviewed mainly from two viewpoints: Serving as raw materials for microfluidic fabrication of building blocks in tissue engineering and the simulation units in microfluidic chip-based microenvironment-mimicking devices. In addition, challenges and outlooks of the exploration of GelMA hydrogels in tissue engineering applications are proposed.


Assuntos
Gelatina/química , Hidrogéis/química , Técnicas Analíticas Microfluídicas , Engenharia Tecidual/métodos , Animais , Materiais Biocompatíveis/química , Bioimpressão , Proliferação de Células , Técnicas de Cocultura , Progressão da Doença , Humanos , Dispositivos Lab-On-A-Chip , Magnetismo , Teste de Materiais , Camundongos , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Impressão Tridimensional , Alicerces Teciduais
7.
BMC Psychiatry ; 19(1): 381, 2019 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-31795970

RESUMO

BACKGROUND: Depression and anxiety result in psychological distress, which can further affect mental status and quality of life in stroke patients. Exploring the associations between positive psychological variables and symptoms of psychological distress following stroke is of great significance for further psychological interventions. METHODS: A total of 710 stroke patients from the five largest cities in Liaoning Province in China were enrolled into the present study in July 2014. All patients independently completed the questionnaires with respect to psychological distress and positive psychological variables. Depressive and anxiety symptoms were evaluated using Center for Epidemiologic Studies Depression Scale (CES-D) and Self-Rating Anxiety Scale, respectively. Positive psychological variables were evaluated using Perceived Social Support Scale, Adult Hope Scale (AHS), General Perceived Self-Efficacy Scale and Resilience Scale-14 (RS-14). Activities of Daily Living (ADL) was measured using Barthel Index. Factors associated with psychological variables and depressive and anxiety symptoms were identified using t-test, ANOVA, correlation and hierarchical linear regression analysis. RESULTS: Depressive and anxiety symptoms were present in 600 of 710 (84.51%) and 537 of 710 (75.63%) stroke patients enrolled, respectively. Social support (ß = - 0.111, p < 0.001) and hope (ß = - 0.120, p < 0.001) were negatively associated with both depressive and anxiety symptoms. Resilience (ß = - 0.179, p < 0.001) was negatively associated with depressive symptoms. Self-efficacy (ß = - 0.135, p < 0.001) was negatively associated with anxiety symptoms. Hierarchical regression analyses indicated that ADL accounted for 10.0 and 6.0% of the variance of depressive and anxiety symptoms, respectively. Social support, resilience, self-efficacy and hope as a whole accounted for 7.5 and 5.3% of the variance of depressive and anxiety symptoms. CONCLUSIONS: The high frequency of depressive and anxiety symptoms among Chinese stroke survivors should receive attentions from all stakeholders. Findings suggested that intervention strategies on ADL, social support, hope, resilience and self-efficacy could be developed to improve psychosocial outcomes for stroke survivors.


Assuntos
Atividades Cotidianas/psicologia , Ansiedade/psicologia , Depressão/psicologia , Angústia Psicológica , Acidente Vascular Cerebral/psicologia , Adulto , Idoso , Ansiedade/etiologia , Povo Asiático/psicologia , Estudos Transversais , Depressão/etiologia , Feminino , Esperança , Humanos , Masculino , Pessoa de Meia-Idade , Qualidade de Vida/psicologia , Autoeficácia , Apoio Social , Inquéritos e Questionários
8.
APL Bioeng ; 8(2): 021504, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38638143

RESUMO

As a primary malignant bone cancer, osteosarcoma (OS) poses a great threat to human health and is still a huge challenge for clinicians. At present, surgical resection is the main treatment strategy for OS. However, surgical intervention will result in a large bone defect, and some tumor cells remaining around the excised bone tissue often lead to the recurrence and metastasis of OS. Biomedical Mg-based materials have been widely employed as orthopedic implants in bone defect reconstruction, and, especially, they can eradicate the residual OS cells due to the antitumor activities of their degradation products. Nevertheless, the fast corrosion rate of Mg alloys has greatly limited their application scope in the biomedical field, and the improvement of the corrosion resistance will impair the antitumor effects, which mainly arise from their rapid corrosion. Hence, it is vital to balance the corrosion resistance and the antitumor activities of Mg alloys. The presented review systematically discussed the potential antitumor mechanisms of three corrosion products of Mg alloys. Moreover, several strategies to simultaneously enhance the anticorrosion properties and antitumor effects of Mg alloys were also proposed.

9.
Int J Biol Macromol ; 264(Pt 2): 130764, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38462100

RESUMO

Vascular disease is the leading health problem worldwide. Vascular microenvironment encompasses diverse cell types, including those within the vascular wall, blood cells, stromal cells, and immune cells. Initiation of the inflammatory state of the vascular microenvironment and changes in its mechanics can profoundly affect vascular homeostasis. Biomedical materials play a crucial role in modern medicine, hydrogels, characterized by their high-water content, have been increasingly utilized as a three-dimensional interaction network. In recent times, the remarkable progress in utilizing hydrogels and understanding vascular microenvironment have enabled the treatment of vascular diseases. In this review, we give an emphasis on the utilization of hydrogels and their advantages in the various vascular diseases including atherosclerosis, aneurysm, vascular ulcers of the lower limbs and myocardial infarction. Further, we highlight the importance and advantages of hydrogels as artificial microenvironments.


Assuntos
Hidrogéis , Doenças Vasculares , Humanos , Hidrogéis/metabolismo , Materiais Biocompatíveis/metabolismo
10.
Biochem Pharmacol ; 226: 116378, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38908529

RESUMO

Lung cancer is the leading cause of cancer death, with non-small cell lung cancer (NSCLC) accounting for approximately 85 % of all lung cancers and having a poor treatment and prognosis. Conventional clinical chemotherapy and immunotherapy are challenged by systemic toxicity and drug resistance, so researchers are increasingly focusing on antibody-drug conjugate (ADC), an innovative concept combining chemotherapy and targeted therapy, in which a drug selectively binds to antigens on the surface of a tumor cell via antibodies, which internalize the ADC, and then transfers the ADC to the lysosome via the endosomes to degrade the drug and kill the tumor cell. Despite the promising nature of ADCs, no ADC product for any indication including NSCLC has been approved for marketing by the FDA to date. In this review, we summarize the main advantages of ADCs and discuss in depth the design of the most desirable ADCs for NSCLC therapy. In addition to preclinical studies, we focus on the current state of clinical research on ADCs as interventions for the treatment of NSCLC by summarizing real-time clinical trial data from ClinicalTrials.gov, and reasonably speculate on the direction of the design of future generations of ADCs.

11.
Int J Biol Macromol ; 267(Pt 2): 131650, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38636756

RESUMO

Diabetic wounds are a common complication of diabetes. The prolonged exposure to high glucose and oxidative stress in the wound environment increases the risk of bacterial infection and abnormal angiogenesis, leading to amputation. Microneedle patches have shown promise in promoting the healing of diabetic wounds through transdermal drug delivery. These patches target the four main aspects of diabetic wound treatment: hypoglycemia, antibacterial action, inflammatory regulation, and tissue regeneration. By overcoming the limitations of traditional administration methods, microneedle patches enable targeted therapy for deteriorated tissues. The design of these patches extends beyond the selection of needle tip material and biomacromolecule encapsulated drugs; it can also incorporate near-infrared rays to facilitate cascade reactions and treat diabetic wounds. In this review, we comprehensively summarize the advantages of microneedle patches compared to traditional treatment methods. We focus on the design and mechanism of these patches based on existing experimental articles in the field and discuss the potential for future research on microneedle patches.


Assuntos
Sistemas de Liberação de Medicamentos , Agulhas , Cicatrização , Humanos , Administração Cutânea , Diabetes Mellitus , Sistemas de Liberação de Medicamentos/métodos , Adesivo Transdérmico , Cicatrização/efeitos dos fármacos
12.
Pharmaceutics ; 15(2)2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36839645

RESUMO

Bone defects have caused immense healthcare concerns and economic burdens throughout the world. Traditional autologous allogeneic bone grafts have many drawbacks, so the emergence of bone tissue engineering brings new hope. Bone tissue engineering is an interdisciplinary biomedical engineering method that involves scaffold materials, seed cells, and "growth factors". However, the traditional construction approach is not flexible and is unable to adapt to the specific shape of the defect, causing the cells inside the bone to be unable to receive adequate nourishment. Therefore, a simple but effective solution using the "bottom-up" method is proposed. Microspheres are structures with diameters ranging from 1 to 1000 µm that can be used as supports for cell growth, either in the form of a scaffold or in the form of a drug delivery system. Herein, we address a variety of strategies for the production of microspheres, the classification of raw materials, and drug loading, as well as analyze new strategies for the use of microspheres in bone tissue engineering. We also consider new perspectives and possible directions for future development.

13.
Crit Rev Anal Chem ; : 1-23, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38039145

RESUMO

Saliva is one of the most critical human body fluids that can reflect the state of the human body. The detection of saliva is of great significance for disease diagnosis and health monitoring. Microfluidics, characterized by microscale size and high integration, is an ideal platform for the development of rapid and low-cost disease diagnostic techniques and devices. Microfluidic-based saliva testing methods have aroused considerable interest due to the increasing need for noninvasive testing and frequent or long-term testing. This review briefly described the significance of saliva analysis and generally classified the targets in saliva detection into pathogenic microorganisms, inorganic substances, and organic substances. By using this classification as a benchmark, the state-of-the-art research results on microfluidic detection of various substances in saliva were summarized. This work also put forward the challenges and future development directions of microfluidic detection methods for saliva.

14.
Acta Biomater ; 164: 1-14, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-36972808

RESUMO

Bone damage may be triggered by a variety of factors, and the damaged area often requires a bone graft. Bone tissue engineering can serve as an alternative strategy for repairing large bone defects. Mesenchymal stem cells (MSCs), the progenitor cells of connective tissue, have become an important tool for tissue engineering due to their ability to differentiate into a variety of cell types. The precise regulation of the growth and differentiation of the stem cells used for bone regeneration significantly affects the efficiency of this type of tissue engineering. During the process of osteogenic induction, the dynamics and function of localized mitochondria are altered. These changes may also alter the microenvironment of the therapeutic stem cells and result in mitochondria transfer. Mitochondrial regulation not only affects the induction/rate of differentiation, but also influences its direction, determining the final identity of the differentiated cell. To date, bone tissue engineering research has mainly focused on the influence of biomaterials on phenotype and nuclear genotype, with few studies investigating the role of mitochondria. In this review, we provide a comprehensive summary of researches into the role of mitochondria in MSCs differentiation and critical analysis regarding smart biomaterials that are able to "programme" mitochondria modulation was proposed. STATEMENT OF SIGNIFICANCE: This review proposed the precise regulation of the growth and differentiation of the stem cells used to seed bone regeneration. • This review addressed the dynamics and function of localized mitochondria during the process of osteogenic induction and the effect of mitochondria on the microenvironment of stem cells. • This review summarized biomaterials which affect the induction/rate of differentiation, but also influences its direction, determining the final identity of the differentiated cell through the regulation of mitochondria.


Assuntos
Células-Tronco Mesenquimais , Osteogênese , Materiais Biocompatíveis/farmacologia , Diferenciação Celular , Mitocôndrias
15.
Int J Biol Macromol ; 242(Pt 3): 124820, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37178890

RESUMO

Bone tissue is a natural composite, exhibiting complicated structures and unique mechanical/biological properties. With an attempt of mimicking the bone tissue, a novel inorganic-organic composite scaffolds (ZrO2-GM/SA) was designed and prepared via the vacuum infiltration method and the single/double cross-linking strategy by blending GelMA/alginate (GelMA/SA) interpenetrating polymeric network (IPN) into the porous zirconia (ZrO2) scaffold. The structure, morphology, compressive strength, surface/interface properties, and biocompatibility of the ZrO2-GM/SA composite scaffolds were characterized to evaluate the performance of the composite scaffolds. Results showed that compared to ZrO2 bare scaffolds with well-defined open pores, the composite scaffolds prepared by double cross-linking of GelMA hydrogel and sodium alginate (SA) presented a continuous, tunable and honeycomb-like microstructure. Meanwhile, GelMA/SA showed favorable and controllable water-uptake capacity, swelling property and degradability. After the introduction of IPN components, the mechanical strength of composite scaffolds was further improved. The compressive modulus of composite scaffolds was significantly higher than the bare ZrO2 scaffolds. In addition, ZrO2-GM/SA composite scaffolds had highly biocompatibility and displayed a potent proliferation and osteogenesis of MC3T3-E1 pre-osteoblasts compared to bare ZrO2 scaffolds and ZrO2-GelMA composite scaffolds. At the same time, ZrO2-10GM/1SA composite scaffold regenerated significantly greater bone than other groups in vivo. This study demonstrated that the proposed ZrO2-GM/SA composite scaffolds had great research and application potential in bone tissue engineering.


Assuntos
Alginatos , Regeneração Óssea , Hidrogéis , Osteogênese , Alicerces Teciduais , Zircônio , Hidrogéis/química , Hidrogéis/farmacologia , Zircônio/química , Zircônio/farmacologia , Polímeros/química , Polímeros/farmacologia , Porosidade , Alginatos/química , Alginatos/farmacologia , Regeneração Óssea/efeitos dos fármacos , Animais , Camundongos , Células 3T3 , Osteogênese/efeitos dos fármacos
16.
Nat Commun ; 14(1): 7694, 2023 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-38001086

RESUMO

The oral delivery of nano-drug delivery systems (Nano-DDS) remains a challenge. Taking inspirations from viruses, here we construct core-shell mesoporous silica nanoparticles (NPs, ~80 nm) with virus-like nanospikes (VSN) to simulate viral morphology, and further modified VSN with L-alanine (CVSN) to enable chiral recognition for functional bionics. By comparing with the solid silica NPs, mesoporous silica NPs and VSN, we demonstrate the delivery advantages of CVSN on overcoming intestinal sequential barriers in both animals and human via multiple biological processes. Subsequently, we encapsulate indomethacin (IMC) into the nanopores of NPs to mimic gene package, wherein the payloads are isolated from bio-environments and exist in an amorphous form to increase their stability and solubility, while the chiral nanospikes multi-sited anchor and chiral recognize on the intestinal mucosa to enhance the penetrability and ultimately improve the oral adsorption of IMC. Encouragingly, we also prove the versatility of CVSN as oral Nano-DDS.


Assuntos
Portadores de Fármacos , Nanopartículas , Animais , Humanos , Indometacina , Solubilidade , Dióxido de Silício , Porosidade , Sistemas de Liberação de Medicamentos
17.
Pharmaceutics ; 15(12)2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-38140070

RESUMO

Cancer is a serious disease with an abnormal proliferation of organ tissues; it is characterized by malignant infiltration and growth that affects human life. Traditional cancer therapies such as resection, radiotherapy and chemotherapy have a low cure rate and often cause irreversible damage to the body. In recent years, since the traditional treatment of cancer is still very far from perfect, researchers have begun to focus on non-invasive near-infrared (NIR)-responsive natural macromolecular hydrogel assembly drugs (NIR-NMHADs). Due to their unique biocompatibility and extremely high drug encapsulation, coupling with the spatiotemporal controllability of NIR, synergistic photothermal therapy (PTT), photothermal therapy (PDT), chemotherapy (CT) and immunotherapy (IT) has created excellent effects and good prospects for cancer treatment. In addition, some emerging bioengineering technologies can also improve the effectiveness of drug delivery systems. This review will discuss the properties of NIR light, the NIR-functional hydrogels commonly used in current research, the cancer therapy corresponding to the materials encapsulated in them and the bioengineering technology that can assist drug delivery systems. The review provides a constructive reference for the optimization of NIR-NMHAD experimental ideas and its application to human body.

18.
Phys Chem Chem Phys ; 14(38): 13233-8, 2012 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-22914763

RESUMO

Graphene oxide (GO) sheets were introduced to stabilize the melted polyethylene glycol (PEG) during the solid-liquid phase change process, which can be used as a smart heat storage system. The structural properties and phase change behaviors of the PEG-GO composites were comprehensively investigated as a function of the PEG content by means of various characterization techniques. The highest stabilized PEG content is 90 wt% in the composites, resulting in a heat storage capacity of 156.9 J g(-1), 93.9% of the phase change enthalpy of pure PEG. Notably, GO has much stronger impact on lowering of the phase change temperature of PEG compared with some other porous carbon materials (activated carbon and ordered mesoporous carbon) due to the unique thin layer structure of GO. Because of the high heat storage capacity and the moderate phase change temperature, the PEG-GO composite is a promising heat energy storage candidate at mild temperature.

19.
Polymers (Basel) ; 14(19)2022 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-36236178

RESUMO

In the field of bone repair, the inorganic-organic composite scaffold is a promising strategy for mimicking the compositions of the natural bone. In addition, as implants for repairing load-bearing sites, an inert permanent bone substitute composites with bioactive degradable ingredients may make full use of the composite scaffold. Herein, the porous zirconia (ZrO2) matrix was prepared via the template replication method, and the partial degradable ZrO2-chitosan particles-GelMA composite scaffolds with different chitosan/GelMA volume ratios were prepared through the vacuum infiltration method. Dynamic light scattering (DLS) and the scanning electron microscope (SEM) were adopted to observe the size of the chitosan particles and the morphologies of the composites scaffold. The mechanical properties, swelling properties, and degradation properties of the composite scaffolds were also characterized by the mechanical properties testing machine and immersion tests. The CCK-8 assay was adopted to test the biocompatibility of the composite scaffold preliminarily. The results show that chitosan particles as small as 60 nm were obtained. In addition, the ratio of chitosan/GelMA can influence the mechanical properties and the swelling and degradation behaviors of the composites scaffold. Furthermore, improved cell proliferation performance was obtained for the composite scaffolds.

20.
Magn Reson Imaging ; 91: 91-99, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35525523

RESUMO

PURPOSE: To develop and validate a multiparametric magnetic resonance imaging-based radiomics nomogram for differentiating malignant and benign soft-tissue tumors. METHODS: A total of 91 patients with pathologically confirmed soft-tissue tumors were enrolled between January 2017 and October 2020. Forty-eight patients were consecutively enrolled between November 2020 and March 2022, as a time-independent cohort. All patients underwent contrast-enhanced T1-weighted and T2-weighted fat-suppression magnetic resonance scans at 3.0 T. Radiomics features were extracted and selected from the two modalities to develop the radiomics signature. Significant clinical/morphological characteristics were identified using a multivariate logistic regression analysis. The least absolute shrinkage and selection operator regression were applied to identify discriminative features. A clinical-radiomics nomogram was constructed based on clinical/morphological characteristics and radiomics features. Finally, the performance of the nomogram was validated using the receiver operating characteristic and decision curve analysis (DCA). RESULTS: Six features were selected to establish the combined RS. Size, margin, and peritumoral edema were identified as the most important clinical and morphological factors, respectively. The radiomics signature outperformed the clinical model in terms of AUC and sensitivity. The nomogram integrating the combined RS, size, margin, and peritumoral edema achieved favorable predictive efficacy, generating AUCs of 0.954 (95% confidence interval [CI]: 0.907-1.000, Sen = 0.861, Spe = 0.917), 0.962 (95% CI: 0.901-1.000, Sen = 0.944, Spe = 0.923), and 0.935 (95% CI: 0.871-0.998, Sen = 0.815, Spe = 0.952) in the training (n = 60), validation (n = 31) and time-independent (n = 48) cohorts, respectively. The DCA curve indicated good clinical usefulness of the nomogram. CONCLUSIONS: Our study demonstrated the clinical potential of multiparametric MRI-based radiomics in distinguishing malignant from benign soft-tissue tumors, which can be considered as a noninvasive tool for individual treatment management.


Assuntos
Imageamento por Ressonância Magnética Multiparamétrica , Neoplasias de Tecidos Moles , Humanos , Imageamento por Ressonância Magnética , Nomogramas , Estudos Retrospectivos , Neoplasias de Tecidos Moles/diagnóstico por imagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA