Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Metab Eng ; 80: 119-129, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37703999

RESUMO

Activating inert substrates is a challenge in nature and synthetic chemistry, but essential for creating functionally active molecules. In this work, we used a combinatorial optimization approach to assemble cytochrome P450 monooxygenases (CYPs) and reductases (CPRs) to achieve a target product profile. By creating 110 CYP-CPR pairs and iteratively screening different pairing libraries, we demonstrated a framework for establishing a CYP network that catalyzes six oxidation reactions at three different positions of a chemical scaffold. Target product titer was improved by remodeling endoplasmic reticulum (ER) size and spatially controlling the CYPs' configuration on the ER. Out of 47 potential products that could be synthesized, 86% of the products synthesized by the optimized network was our target compound quillaic acid (QA), the aglycone backbone of many pharmaceutically important saponins, and fermentation achieved QA titer 2.23 g/L.


Assuntos
Sistema Enzimático do Citocromo P-450 , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Oxirredução
2.
Metab Eng ; 59: 44-52, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32004707

RESUMO

Silymarin extracted from milk thistle seeds, is used for treating hepatic diseases. Silybin and isosilybin are its main components, and synthesized from coupling of taxifolin and coniferyl alcohol. Here, the biosynthetic pathways of taxifolin and coniferyl alcohol were reconstructed in Saccharomyces cerevisiae for the first time. To alleviate substantial burden caused by a great deal of genetic manipulation, expression of the enzymes (e.g. ZWF1, TYR1 and ARO8) playing multiple roles in the relevant biosynthetic pathways was selectively optimized. The strain YT1035 overexpressing seven heterologous enzymes and five native enzymes and the strain YC1053 overexpressing seven heterologous enzymes and four native enzymes, respectively produce 336.8 mg/L taxifolin and 201.1 mg/L coniferyl alcohol. Silybin and isosilybin are synthesized from taxifolin and coniferyl alcohol under catalysis of APX1t (the truncated milk thistle peroxidase), with a yield of 62.5%. This study demonstrates an approach for producing silybin and isosilybin from glucose for the first time.


Assuntos
Engenharia Metabólica , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Silibina/metabolismo , Silimarina/análogos & derivados , Silimarina/metabolismo
3.
Appl Microbiol Biotechnol ; 99(17): 7035-45, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25981997

RESUMO

Long-term stable cell growth and production of vindoline, catharanthine, and ajmalicine of cambial meristematic cells (CMCs) from Catharanthus roseus were observed after 2 years of culture. C. roseus CMCs were treated with ß-cyclodextrin (ß-CD) and methyl jasmonate (MeJA) individually or in combination and were cultured both in conventional Erlenmeyer flasks (100, 250, and 500 mL) and in a 5-L stirred hybrid airlift bioreactor. CMCs of C. roseus cultured in the bioreactor showed higher yields of vindoline, catharanthine, and ajmalicine than those cultured in flasks. CMCs of C. roseus cultured in the bioreactor and treated with 10 mM ß-CD and 150 µM MeJA gave the highest yields of vindoline (7.45 mg/L), catharanthine (1.76 mg/L), and ajmalicine (58.98 mg/L), concentrations that were 799, 654, and 426 % higher, respectively, than yields of CMCs cultured in 100-mL flasks without elicitors. Quantitative reverse transcription (RT)-PCR showed that ß-CD and MeJA upregulated transcription levels of genes related to the biosynthesis of terpenoid indole alkaloids (TIAs). This is the first study to report that ß-CD induced the generation of NO, which plays an important role in mediating the production of TIAs in C. roseus CMCs. These results suggest that ß-CD and MeJA can enhance the production of TIAs in CMCs of C. roseus, and thus, CMCs of C. roseus have significant potential to be an industrial platform for production of bioactive alkaloids.


Assuntos
Acetatos/metabolismo , Catharanthus/efeitos dos fármacos , Catharanthus/metabolismo , Ciclopentanos/metabolismo , Oxilipinas/metabolismo , Alcaloides de Triptamina e Secologanina/metabolismo , Vimblastina/análogos & derivados , Alcaloides de Vinca/metabolismo , beta-Ciclodextrinas/metabolismo , Células Cultivadas , Células Vegetais/efeitos dos fármacos , Células Vegetais/metabolismo , Vimblastina/metabolismo
4.
ScientificWorldJournal ; 2014: 293190, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25136654

RESUMO

Artemisinin has been used in the production of "artemisinin combination therapies" for the treatment of malaria. Feeding of precursors has been proven to be one of the most effective methods to enhance artemisinin production in plant cultured cells. At the current paper, the biosynthesis of artemisinin (ART) and its four analogs from dihydroartemisinic acid (DHAA) in suspension-cultured cells of Artemisia annua were investigated. ARTs were detected by HPLC/GC-MS and isolated by various chromatography methods. The structures of four DHAA metabolites, namely, dihydro-epi-deoxyarteannuin B, arteannuin I, arteannuin K, and 3-ß-hydroxy-dihydro-epi-deoxyarteannuin B, were elucidated by physicochemical and spectroscopic analyses. The correlation between gene expression and ART content was investigated. The results of RT-PCR showed that DHAA could up-regulate expression of amorpha-4,11-diene synthase gene (ADS), amorpha-4,11-diene C-12 oxidase gene (CYP71AV1), and farnesyl diphosphate synthase gene (FPS) (3.19-, 7.21-, and 2.04-fold higher than those of control group, resp.), which indicated that biosynthesis processes from DHAA to ART were enzyme-mediated.


Assuntos
Artemisia annua/efeitos dos fármacos , Artemisia annua/metabolismo , Artemisininas/metabolismo , Artemisininas/farmacologia , Células Cultivadas , Cromatografia Líquida de Alta Pressão , Cromatografia Gasosa-Espectrometria de Massas , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
5.
Nat Prod Commun ; 10(12): 2095-6, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26882673

RESUMO

Vincristine and vinblastine were found by Liquid Chromatography-Mass Spectrometry (LC-MS) in Catharanthus roseuscambial meristem cells (CMCs) jointly treated with 0.25 mM vindoline and methyl jasmonate (MeJA), suggesting that C. roseus CMCs contain a complete set of the enzymes which are in response to convert vindoline into vincristine and vinblastine. Based on the facts that the transcript levels of vindoline-biosynthetic genes (STR, SGD and D4H) were up-regulated instead of being down-regulated by adding itself to the culture, and that the transcriptional factor ORCA3 was up-regulated simultaneously, we further confirmed that the transcription of STR, SGD, D4H was manipulated by ORCA3.


Assuntos
Acetatos/farmacologia , Câmbio/citologia , Catharanthus/citologia , Ciclopentanos/farmacologia , Oxilipinas/farmacologia , Vimblastina/análogos & derivados , Vimblastina/biossíntese , Vincristina/biossíntese , Antineoplásicos Fitogênicos/biossíntese , Câmbio/metabolismo , Catharanthus/efeitos dos fármacos , Catharanthus/metabolismo , Células Cultivadas , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Vimblastina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA