Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Biomacromolecules ; 24(6): 2549-2562, 2023 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-37115848

RESUMO

Three-dimensional (3D) extrusion bioprinting has emerged as one of the most promising biofabrication technologies for preparing biomimetic tissue-like constructs. The successful construction of cell-laden constructs majorly relies on the development of proper bioinks with excellent printability and cytocompatibility. Bioinks based on gelatin methacryloyl (GelMA) have been widely explored due to the excellent biocompatibility and biodegradability and the presence of the arginine-glycine-aspartic acid (RGD) sequences for cell adhesion. However, such bioinks usually require low-temperature or ionic cross-linking systems to solidify the extruded hydrogel structures, which results in complex processes and limitations to certain applications. Moreover, many current hydrogel-based bioinks, even after chemical cross-linking, hardly possess the required strength to resist the mechanical loads during the implantation procedure. Herein, we report a self-healing hydrogel bioink based on GelMA and oxidized dextran (OD) for the direct printing of tough and fatigue-resistant cell-laden constructs at room temperature without any template or cross-linking agents. Enabled by dynamic Schiff base chemistry, the mixed GelMA/OD solution showed the characteristics of a dynamic hydrogel with shear-thinning and self-supporting behavior, which allows bridging the 5 mm gap and efficient direct bioprinting of complex constructs with high shape fidelity. After photo-cross-linking, the resulting tissue constructs exhibited excellent low cell damage, high cell viability, and enhanced mechanical strength. Moreover, the GelMA/OD construct could resist up to 95% compressive deformation without any breakage and was able to maintain 80% of the original Young's modulus during long-term loading (50 cycles). It is believed that our GelMA/OD bioink would expand the potential of GelMA-based bioinks in applications such as tissue engineering and pharmaceutical screening.


Assuntos
Bioimpressão , Hidrogéis , Hidrogéis/farmacologia , Hidrogéis/química , Bioimpressão/métodos , Impressão Tridimensional , Engenharia Tecidual/métodos , Gelatina/química , Sobrevivência Celular , Alicerces Teciduais/química
2.
Small ; 15(23): e1805510, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31033203

RESUMO

Over the last decades, the fabrication of 3D tissues has become commonplace in tissue engineering and regenerative medicine. However, conventional 3D biofabrication techniques such as scaffolding, microengineering, and fiber and cell sheet engineering are limited in their capacity to fabricate complex tissue constructs with the required precision and controllability that is needed to replicate biologically relevant tissues. To this end, 3D bioprinting offers great versatility to fabricate biomimetic, volumetric tissues that are structurally and functionally relevant. It enables precise control of the composition, spatial distribution, and architecture of resulting constructs facilitating the recapitulation of the delicate shapes and structures of targeted organs and tissues. This Review systematically covers the history of bioprinting and the most recent advances in instrumentation and methods. It then focuses on the requirements for bioinks and cells to achieve optimal fabrication of biomimetic constructs. Next, emerging evolutions and future directions of bioprinting are discussed, such as freeform, high-resolution, multimaterial, and 4D bioprinting. Finally, the translational potential of bioprinting and bioprinted tissues of various categories are presented and the Review is concluded by exemplifying commercially available bioprinting platforms.


Assuntos
Bioimpressão/métodos , Impressão Tridimensional , Medicina Regenerativa/tendências , Pesquisa Translacional Biomédica , Biomimética/métodos , Biomimética/tendências , Humanos , Medicina Regenerativa/métodos , Engenharia Tecidual/métodos , Pesquisa Translacional Biomédica/métodos , Pesquisa Translacional Biomédica/tendências
3.
Biomater Adv ; 154: 213638, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37812984

RESUMO

The treatment and reconstruction of large or critical size bone defects is a challenging clinical problem. Additive manufacturing breaks the technical difficulties of preparing complex conformation and anatomically matched personalized porous tantalum implants, but the ideal pore structure for 3D-printed porous tantalum in critical bone defect repair applications remains unclear. Guiding appropriate bone tissue regeneration by regulating proper pore size-pore distribution-pore geometry-porosity is a challenge for its fabrication and application. We fabricated porous tantalum (PTa) scaffolds with six different combinations of pore structures using powder bed laser melting (L-PBF) technology. In vitro biological experiments were conducted to systematically investigate the effects of pore structure characteristics on osteoblast behaviors, showing that the bionic trabecular structure with both large and small poress facilitated cell permeation, proliferation and differentiation compared to the cubic structure with uniform pore sizes. The osteogenesis of PTa with different porosity of trabecular structures was further investigated by a rabbit condyle critical bone defect model. Synthetically, T70% up-regulated the expression of osteogenesis-related genes (ALP, COLI, OCN, RUNX-2) and showed the highest bone ingrowth area and bone contact rate in vivo after 16 weeks, with the best potential for critical bone defect repair. Our results suggested that the bionic trabecular structure with a pore size distribution of 200-1200 µm, an average pore size of 700 µm, and a porosity of 70 % is the best choice for repairing critical bone defects, which is expected to guide the clinical application of clinical 3D-printed PTa scaffolds.


Assuntos
Osteogênese , Tantálio , Animais , Coelhos , Porosidade , Tantálio/farmacologia , Osteogênese/genética , Osso e Ossos , Impressão Tridimensional
4.
Front Bioeng Biotechnol ; 11: 1117954, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36777251

RESUMO

Porous tantalum implants are a class of materials commonly used in clinical practice to repair bone defects. However, the cumbersome and problematic preparation procedure have limited their widespread application. Additive manufacturing has revolutionized the design and process of orthopedic implants, but the pore architecture feature of porous tantalum scaffolds prepared from additive materials for optimal osseointegration are unclear, particularly the influence of porosity. We prepared trabecular bone-mimicking tantalum scaffolds with three different porosities (60%, 70% and 80%) using the laser powder bed fusing technique to examine and compare the effects of adhesion, proliferation and osteogenic differentiation capacity of rat mesenchymal stem cells on the scaffolds in vitro. The in vivo bone ingrowth and osseointegration effects of each scaffold were analyzed in a rat femoral bone defect model. Three porous tantalum scaffolds were successfully prepared and characterized. In vitro studies showed that scaffolds with 70% and 80% porosity had a better ability to osteogenic proliferation and differentiation than scaffolds with 60% porosity. In vivo studies further confirmed that tantalum scaffolds with the 70% and 80% porosity had a better ability for bone ingrowh than the scaffold with 60% porosity. As for osseointegration, more bone was bound to the material in the scaffold with 70% porosity, suggesting that the 3D printed trabecular tantalum scaffold with 70% porosity could be the optimal choice for subsequent implant design, which we will further confirm in a large animal preclinical model for better clinical use.

5.
3D Print Addit Manuf ; 10(5): 887-904, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37886405

RESUMO

Porous tantalum (Ta) scaffolds have been extensively used in the clinic for reconstructing bone tissues owing to their outstanding corrosion resistance, biocompatibility, osteointegration, osteoconductivity, and mechanical properties. Additive manufacturing (AM) has an advantage in fabricating patient-specific and anatomical-shape-matching bone implants with controllable and well-designed porous architectures through tissue engineering. The sharp angles of strut joints in porous structures can cause stress concentration, reducing mechanical properties of the structures. In this study, porous Ta scaffolds comprising rhombic dodecahedron lattice unit cells with optimized node radius and porosities of 65%, 75%, and 85% were designed and fabricated by AM. The porous architecture and microstructure were characterized. The compressive behavior and failure mechanism of the material were explored through experimental compression tests and finite element analysis (FEA). Morphological evaluations revealed that the Ta scaffolds are fully interconnected, and the struts are dense. No processing defects and fractures were observed on the surface of struts. The scaffolds exhibited compressive yield strength of 5.8-32.3 MPa and elastic modulus of 0.6-4.5 GPa, comparable to those of human cancellous and trabecular bone. The compressive stress-strain curves of all samples show ductile deformation behavior accompanied by a smooth plateau region. The AM-fabricated rhombic dodecahedron lattice Ta scaffolds exhibited excellent ductility and mechanical reliability and plastic failure due to bending deformation under compressive loading. Deformation and factures primarily occurred at the junctions of the rhombus-arranged struts in the longitudinal section. Moreover, the struts in the middle of the scaffolds underwent a larger deformation than those close to the loading ends. FEA revealed a smooth stress distribution on the rhombic dodecahedron lattice structure with optimized node radius and stress concentration at the junctions of rhombus-arranged struts in the longitudinal section, which is in good agreement with the experimental results. Thus, the AM-fabricated Ta scaffolds with optimized node radius are promising alternatives for bone repair and regeneration.

6.
J Biomech Eng ; 134(7)2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24763626

RESUMO

An understanding of human seated posture is important across many fields of scientific research. Certain demographics, such as pregnant women, have special postural limitations that need to be considered. Physics-based posture prediction is a tool in which seated postures can be quickly and thoroughly analyzed, as long the predicted postures are realistic. This paper proposes and validates an optimization formulation to predict seated posture for pregnant women considering ground and seat pan contacts. For the optimization formulation, the design variables are joint angles (posture); the cost function is dependent on joint torques. Constraints include joint limits, joint torque limits, the distances from the end-effectors to target points, and self-collision avoidance constraints. Three different joint torque cost functions have been investigated to account for the special postural characteristics of pregnant women and consider the support reaction forces (SRFs) associated with seated posture. Postures are predicted for three different reaching tasks in common reaching directions using each of the objective function formulations. The predicted postures are validated against experimental postures obtained using motion capture. A linear regression analysis was used to evaluate the validity of the predicted postures and was the criteria for comparison between the different objective functions. A 56 degree of freedom model was used for the posture prediction. Use of the objective function minimizing the maximum normalized joint torque provided an R² value of 0.828, proving superior to either of two alternative functions.


Assuntos
Fenômenos Biofísicos , Simulação por Computador , Fenômenos Mecânicos , Postura , Fenômenos Biomecânicos , Feminino , Humanos , Modelos Anatômicos , Gravidez , Esqueleto , Torque
7.
J Occup Environ Hyg ; 9(1): 46-58, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22168255

RESUMO

This article presents a computational and experimental study of contact pressure between six N95 filtering facepiece respirators (FFRs) and five newly developed digital headforms (small, medium, large, long/narrow, and short/wide). Contact interaction is simulated using the finite element method and validated by experiments using a pressure mapping system. The headform model has multiple layers: a skin layer, muscle layer, fatty tissue layer, and bone layer. Each headform is divided into five parts (two parts for the cheeks, one part for the upper forehead, one part for the chin, and one part for the back side of the head). Each respirator model comprises multiple layers and two straps. The simulation process has two stages for each respirator/headform combination. The first stage is to wrap the straps around the back of the headform and pull the respirator away from the face. The second stage is to release the respirator so that the respirator moves toward the face. Strap forces and contact interactions are generated between the respirators and the headforms. Meanwhile, a real-time surface pressure mapping system is used to record the pressures at six key locations to validate the computational results. There is a strong correlation between computational and experimental results (R(2) = 0.88). By comparing the pressure values from simulations and experiments, we have validated the simulation models.


Assuntos
Simulação por Computador , Análise de Elementos Finitos , Teste de Materiais/métodos , Modelos Anatômicos , Dispositivos de Proteção Respiratória , Fenômenos Biomecânicos , Desenho de Equipamento , Cabeça , Humanos , Pressão , Estresse Mecânico
8.
ACS Chem Neurosci ; 13(12): 1714-1718, 2022 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-35609278

RESUMO

Neurodegenerative diseases are a class of disorders linked to the formation in the nervous system of fibrillar protein aggregates called amyloids. This aggregation process is affected by a variety of post-translational modifications, whose specific mechanisms are not fully understood yet. Emerging chemical mutagenesis technology is currently striving to address the challenge of introducing protein post-translational modifications, while maintaining the stability and solubility of the proteins during the modification reaction. Several amyloidogenic proteins are highly aggregation-prone, and current modification procedures can lead to unexpected precipitation of these proteins, affecting their yield and downstream characterization. Here, we present a method for maintaining amyloidogenic protein solubility during chemical mutagenesis. As proof-of-principle, we applied our method to mimic the phosphorylation of serine-26 and the acetylation of lysine-28 of the 40-residue long variant of amyloid-ß peptide, whose aggregation is linked to Alzheimer's disease.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Amiloide/metabolismo , Peptídeos beta-Amiloides/metabolismo , Proteínas Amiloidogênicas/metabolismo , Humanos , Mutagênese , Processamento de Proteína Pós-Traducional
9.
Int J Bioprint ; 8(1): 438, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35187276

RESUMO

Additively manufactured trabecular tantalum (Ta) scaffolds are promising bone repair materials for load-bearing applications due to their good pore interconnectivity. However, a thorough mechanical behavior evaluation is required before conducting animal studies and clinical research using these scaffolds. In this study, we revealed the compressive mechanical behavior and material failure mechanism of trabecular tantalum scaffolds by compression testing, finite element analysis (FEA), and scanning electron microscopy (SEM). Trabecular tantalum scaffolds with porosities of 65%, 75%, and 85% were fabricated by laser powder bed fusion-based additive manufacturing. Porosity has a significant effect on their compressive mechanical properties. As the porosity decreased from 85% to 65%, the compressive yield strength and elastic modulus increased from 11.9 MPa to 35.7 MPa and 1.1 GPa to 3.0 GPa, respectively. Compression testing results indicate that trabecular tantalum scaffolds demonstrate ductile deformation and excellent mechanical reliability. No macroscopic cracks were found when they were subjected to strain up to 50%. SEM observations showed that material failure results from tantalum strut deformation and fracture. Most microcracks occurred at conjunctions, whereas few of them appear on the struts. FEA-generated compressive stress distribution and material deformation were consistent with experimental results. Stress concentrates at strut conjunctions and vertical struts, where fractures occur during compression testing, indicating that the load-bearing capability of trabecular tantalum scaffolds can be enhanced by strengthening strut conjunctions and vertical struts. Therefore, additively manufactured trabecular tantalum scaffolds can be used in bone tissue reconstruction applications.

10.
Mater Sci Eng C Mater Biol Appl ; 130: 112461, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34702536

RESUMO

Laser powder bed fusion (LPBF) additive manufacturing of pure tantalum and their graded lattice structures was systematically investigated, with emphasis on their microstructure evolution, phase formation, surface energy and biological properties in comparison with conventionally forged pure Ta. The LPBF fabricated Ta (LPBF-Ta) exhibited lower contact angles and higher surface energy than the forged-Ta which indicated the better wettability of the LPBF-Ta. The adhesion and proliferation of rat bone marrow stromal cells (rBMSCs) were also enhanced for the LPBF-Ta when compared to forged-Ta. Three different Ta graded gyroid lattice structures (i.e., uniform structure, Y-gradient structure, Z-gradient structure) were designed and fabricated using the same optimised LPBF parameters. Y-gradient structures exhibited the best plateau stress and compressive modulus among three different graded structures due to the maximum local volume fraction on the fracture plane. In fatigue response, Y-gradient outperformed the other two gyroid structures under varying stresses. In terms of cell culture response, the uniform structures performed the best biocompatibility due to its suitable pore size for cell adhesion and growth. This study provides new and in-depth insights into the LPBF additive manufacturing of pure Ta graded lattice structures with desired fatigue and biological properties for load-bearing orthopaedic applications.


Assuntos
Ortopedia , Tantálio , Animais , Teste de Materiais , Porosidade , Ratos , Suporte de Carga
11.
Biomed Mater ; 14(6): 065013, 2019 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-31491772

RESUMO

The treatment of large-area bone defects is a huge challenge and the current research hot spot is to prepare composite materials to promote the new bone formation. In this study, the rat skull defect was repaired by implanting pure wollastonite and hydroxyapatite composites, which proved that it has a good effect on the treatment of bone defects. 60 SD rats were used as research objects. The animals were randomly divided into wollastonite group, wollastonite-hydroxyapatite composite group and hydroxyapatite group. The three groups of bone scaffolds were filled into the rats' skull defects. At 6 and 12 weeks after surgery, we conducted Micro-CT analysis, HE staining, Masson trichrome staining, Alizarin red staining and Microfil analysis, to assess the therapeutic and regeneration effects of three groups. At 6 weeks after implantation, the morphology results showed that little newly formed bone was observed in wollastonite group, on the contrary, more new bone in the surgical defects formed in the wollastonite-hydroxyapatite composite group and hydroxyapatite group. At 12 weeks after surgery, histology analyses revealed that the regenerated bone became more mature in each groups. The morphology showed that the maturity of new bone was improved and the scaffold material was partially absorbed in wollastonite-hydroxyapatite composite group. CT scan observation showed that on the coronal plane, the defect repair area of wollastonite-hydroxyapatite composite group was integrated with the surrounding normal bone tissue, and the sacffold material was tightly integrated with the defect edge. The results of Microfil showed that compared with wollastonite group and hydroxyapatite group, wollastonite-hydroxyapatite composite group formed more blood vessels after 12 weeks of surgery. The wollastonite-hydroxyapatite composite biomaterial can promote the formation and growth of new bone in the defect area, and it is considered safe.


Assuntos
Doenças Ósseas/tratamento farmacológico , Regeneração Óssea , Osso e Ossos/efeitos dos fármacos , Compostos de Cálcio/uso terapêutico , Durapatita/uso terapêutico , Silicatos/uso terapêutico , Animais , Materiais Biocompatíveis/química , Peso Corporal , Transplante Ósseo/métodos , Masculino , Osteogênese , Ratos , Ratos Sprague-Dawley , Engenharia Tecidual/métodos , Alicerces Teciduais , Microtomografia por Raio-X
12.
Adv Mater ; 30(50): e1805460, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30345555

RESUMO

3D bioprinting technology provides programmable and customizable platforms to engineer cell-laden constructs mimicking human tissues for a wide range of biomedical applications. However, the encapsulated cells are often restricted in spreading and proliferation by dense biomaterial networks from gelation of bioinks. Herein, a cell-benign approach is reported to directly bioprint porous-structured hydrogel constructs by using an aqueous two-phase emulsion bioink. The bioink, which contains two immiscible aqueous phases of cell/gelatin methacryloyl (GelMA) mixture and poly(ethylene oxide) (PEO), is photocrosslinked to fabricate predesigned cell-laden hydrogel constructs by extrusion bioprinting or digital micromirror device-based stereolithographic bioprinting. The porous structure of the 3D-bioprinted hydrogel construct is formed by subsequently removing the PEO phase from the photocrosslinked GelMA hydrogel. Three different cell types (human hepatocellular carcinoma cells, human umbilical vein endothelial cells, and NIH/3T3 mouse embryonic fibroblasts) within the 3D-bioprinted porous hydrogel patterns show enhanced cell viability, spreading, and proliferation compared to the standard (i.e., nonporous) hydrogel constructs. The 3D bioprinting strategy is believed to provide a robust and versatile platform to engineer porous-structured tissue constructs and their models for a variety of applications in tissue engineering, regenerative medicine, drug development, and personalized therapeutics.

13.
J Thorac Dis ; 10(11): 6230-6237, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30622795

RESUMO

BACKGROUND: Severe pectus excavatum (PE) may be concomitant with congenital cystic lung lesions (CCLLs) that also require surgery. It is ideal to correct these two deformities concurrently, but the safety and efficacy of a simultaneous surgical technique remain unknown. METHODS: Between 2007 and 2017, 635 patients with severe PE were admitted at our medical center. Eight patients underwent minimally invasive repair of PE and lobectomy simultaneously. The patient characteristics and operative data were analyzed and compared with another group of patients who underwent lobectomy alone for contemporaneous CCLLs. RESULTS: The severity of PE (mean Haller index 5.70) and CCLLs were confirmed by computed tomography (CT). Simultaneous minimally invasive repair and lobectomy were performed successfully. There were no significant differences in the mean blood loss (14 mL/kg), the mean weaning time from mechanical ventilation (900 minutes) and the mean hospital stay (16 days) (P>0.05). The mean operative time (170 minutes) was extended, as expected (P=0.02). With a mean follow-up of 22 months, the overall cosmetic results were good. CONCLUSIONS: Simultaneous minimally invasive repair and lobectomy appears to be a technically safe and reliable method for the treatment of concurrent PE and CCLLs, although further studies are needed in the long-term follow-up.

14.
Acta Biomater ; 57: 1-25, 2017 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-28088667

RESUMO

Despite tremendous advances in the field of regenerative medicine, it still remains challenging to repair the osteochondral interface and full-thickness articular cartilage defects. This inefficiency largely originates from the lack of appropriate tissue-engineered artificial matrices that can replace the damaged regions and promote tissue regeneration. Hydrogels are emerging as a promising class of biomaterials for both soft and hard tissue regeneration. Many critical properties of hydrogels, such as mechanical stiffness, elasticity, water content, bioactivity, and degradation, can be rationally designed and conveniently tuned by proper selection of the material and chemistry. Particularly, advances in the development of cell-laden hydrogels have opened up new possibilities for cell therapy. In this article, we describe the problems encountered in this field and review recent progress in designing cell-hydrogel hybrid constructs for promoting the reestablishment of osteochondral/cartilage tissues. Our focus centers on the effects of hydrogel type, cell type, and growth factor delivery on achieving efficient chondrogenesis and osteogenesis. We give our perspective on developing next-generation matrices with improved physical and biological properties for osteochondral/cartilage tissue engineering. We also highlight recent advances in biomanufacturing technologies (e.g. molding, bioprinting, and assembly) for fabrication of hydrogel-based osteochondral and cartilage constructs with complex compositions and microarchitectures to mimic their native counterparts. STATEMENT OF SIGNIFICANCE: Despite tremendous advances in the field of regenerative medicine, it still remains challenging to repair the osteochondral interface and full-thickness articular cartilage defects. This inefficiency largely originates from the lack of appropriate tissue-engineered biomaterials that replace the damaged regions and promote tissue regeneration. Cell-laden hydrogel systems have emerged as a promising tissue-engineering platform to address this issue. In this article, we describe the fundamental problems encountered in this field and review recent progress in designing cell-hydrogel constructs for promoting the reestablishment of osteochondral/cartilage tissues. Our focus centers on the effects of hydrogel composition, cell type, and growth factor delivery on achieving efficient chondrogenesis and osteogenesis. We give our perspective on developing next-generation hydrogel/inorganic particle/stem cell hybrid composites with improved physical and biological properties for osteochondral/cartilage tissue engineering. We also highlight recent advances in biomanufacturing and bioengineering technologies (e.g. 3D bioprinting) for fabrication of hydrogel-based osteochondral and cartilage constructs.


Assuntos
Cartilagem/metabolismo , Condrogênese , Hidrogéis/química , Osteogênese , Engenharia Tecidual/métodos , Animais , Cartilagem/citologia , Humanos
15.
ACS Biomater Sci Eng ; 3(4): 637-647, 2017 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-33429631

RESUMO

In this paper we report a "steel-concrete" inspired layered hybrid spine cage combining a titanium mesh and a bioceramic scaffold, which were welded together through a bioglass bonding layer using a novel multistep manufacturing methodology including three-dimensional slip deposition, gel casting, freeze-drying, and cosintering. The interfacial welding strength achieved 27 ± 0.7 MPa, indicating an excellent structural integrity of the hybrid cage construct. The biocramic scaffold layer consisting of wollastonite and hydroxyapatite had an interconnected, highly porous structure with a pore size of 100-500 µm and a porosity of >85%, well fufilling the structural requirements of bone regeneration. Simulated body fluid immersion assay showed that the hybrid cage exhibited excellent biodegradability to facilitate rapid bone-like apatite formation. In vitro studies demonstrated that the bioceramic scaffold on the hybrid cage supported attachment, spreading, growth, and migration of bone/vessel-forming cells and triggered osteogenic differentiation of human mesenchymal stem cells. In vivo studies further suggested that the bioceramic scaffold on the hybrid cage could actively promote fast generation of new bone tissues within 12 weeks of implantation in a rabbit femoral condyle model. This study has provided a new design and fabrication methodology of hybrid cages by integrating strong mechanical properties with excellent biological activities including osteoinductivity and bone regeneration ability, for spine fusion and segmental bone reconstruction.

16.
Sci Rep ; 7(1): 359, 2017 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-28337023

RESUMO

A chitosan-based microsphere delivery system has been fabricated for controlled release of alendronate (AL). The present study aimed to incorporate the chitosan/hydroxyapatite microspheres-loaded with AL (CH/nHA-AL) into poly(L-lactic acid)/nanohydroxyapatite (PLLA/nHA) matrix to prepare a novel microspheres-scaffold hybrid system (CM-ALs) for drug delivery and bone tissue engineering application. The characteristics of CM-ALs scaffolds containing 10% and 20% CH/nHA-AL were evaluated in vitro, including surface morphology and porosity, mechanical properties, drug release, degradation, and osteogenic differentiation. The in vivo bone repair for large segmental radius defects (1.5 cm) in a rabbit model was evaluated by radiography and histology. In vitro study showed more sustained drug release of CM-AL-containing scaffolds than these of CM/nHA-AL and PLLA/nHA/AL scaffolds, and the mechanical and degradation properties of CM-ALs (10%) scaffolds were comparable to that of PLLA/nHA control. The osteogenic differentiation of adipose-derived stem cells (ASCs) was significantly enhanced as indicated by increased alkaline phosphates (ALP) activity and calcium deposition. In vivo study further showed better performance of CM-ALs (10%) scaffolds with complete repair of large-sized bone defects within 8 weeks. A microspheres-scaffold-based release system containing AL-encapsulated chitosan microspheres was successfully fabricated in this study. Our results suggested the promising application of CM-ALs (10%) scaffolds for drug delivery and bone tissue engineering.


Assuntos
Alendronato/administração & dosagem , Regeneração Óssea/efeitos dos fármacos , Substitutos Ósseos/química , Sistemas de Liberação de Medicamentos/métodos , Alicerces Teciduais , Alendronato/farmacocinética , Animais , Células Cultivadas , Quitosana/química , Durapatita/química , Técnicas In Vitro , Ácido Láctico/química , Microesferas , Osteogênese/efeitos dos fármacos , Coelhos , Engenharia Tecidual/métodos
17.
Ann Biomed Eng ; 45(1): 148-163, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27126775

RESUMO

The field of regenerative medicine has progressed tremendously over the past few decades in its ability to fabricate functional tissue substitutes. Conventional approaches based on scaffolding and microengineering are limited in their capacity of producing tissue constructs with precise biomimetic properties. Three-dimensional (3D) bioprinting technology, on the other hand, promises to bridge the divergence between artificially engineered tissue constructs and native tissues. In a sense, 3D bioprinting offers unprecedented versatility to co-deliver cells and biomaterials with precise control over their compositions, spatial distributions, and architectural accuracy, therefore achieving detailed or even personalized recapitulation of the fine shape, structure, and architecture of target tissues and organs. Here we briefly describe recent progresses of 3D bioprinting technology and associated bioinks suitable for the printing process. We then focus on the applications of this technology in fabrication of biomimetic constructs of several representative tissues and organs, including blood vessel, heart, liver, and cartilage. We finally conclude with future challenges in 3D bioprinting as well as potential solutions for further development.


Assuntos
Órgãos Artificiais , Impressão Tridimensional , Medicina Regenerativa , Engenharia Tecidual , Animais , Humanos , Medicina Regenerativa/instrumentação , Medicina Regenerativa/métodos , Engenharia Tecidual/instrumentação , Engenharia Tecidual/métodos
18.
Adv Mater ; 29(3)2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27859710

RESUMO

The development of a multimaterial extrusion bioprinting platform is reported. This platform is capable of depositing multiple coded bioinks in a continuous manner with fast and smooth switching among different reservoirs for rapid fabrication of complex constructs, through digitally controlled extrusion of bioinks from a single printhead consisting of bundled capillaries synergized with programmed movement of the motorized stage.


Assuntos
Bioimpressão , Engenharia Tecidual , Alicerces Teciduais
19.
Nanoscale ; 8(6): 3599-606, 2016 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-26805036

RESUMO

Permeable porous nanomaterials have extensive applications in engineering fields. Here, we report a novel system of porous calcium aluminate/phosphate (CaAl-CaP) nanocomposites fabricated by pore generator free processing. The CaAl rich samples have close micropores and are not permeable. Interestingly, the CaP rich composites have a unique three-dimensional nanosieve structure with interconnected nanopores and exhibit excellent liquid permeability and adsorbability. The pore size has a narrow distribution of 200-500 nm. The CaAl nanoplatelets in the CaP rich composite have a thickness of 202 nm, a diameter of 1600 nm and an aspect ratio of 8. The porosity is from 19% to 40%. The bending strength and compressive strength are 40.3 MPa and 195 MPa, respectively. The CaP rich nanocomposite is highly permeable so that a water droplet can completely penetrate in 10 seconds (1 mm thick disk). The blue dye can be desorbed in 45 min by ultrasonic vibration. Given the nanosieve porous structure, good permeability/adsorbability and high mechanical properties, the CaP rich nanocomposite has big potential in applications for chemical engineering, biomedical engineering and energy/environmental engineering.

20.
Nanoscale ; 8(29): 14279, 2016 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-27401042

RESUMO

Correction for 'ß-Sialon nanowires, nanobelts and hierarchical nanostructures: morphology control, growth mechanism and cathodoluminescence properties' by Juntong Huang, et al., Nanoscale, 2014, 6, 424-432.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA