Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Stoch Environ Res Risk Assess ; 37(4): 1479-1495, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36530378

RESUMO

In hazy days, several local authorities always implemented the strict traffic-restriction measures to improve the air quality. However, owing to lack of data, the quantitative relationships between them are still not clear. Coincidentally, traffic restriction measures during the COVID-19 pandemic provided an experimental setup for revealing such relationships. Hence, the changes in air quality in response to traffic restrictions during COVID-19 in Spain and United States was explored in this study. In contrast to pre-lockdown, the private traffic volume as well as public traffic during the lockdown period decreased within a range of 60-90%. The NO2 concentration decreased by approximately 50%, while O3 concentration increased by approximately 40%. Additionally, changes in air quality in response to traffic reduction were explored to reveal the contribution of transportation to air pollution. As the traffic volume decreased linearly, NO2 concentration decreased exponentially, whereas O3 concentration increased exponentially. Air pollutants did not change evidently until the traffic volume was reduced by less than 40%. The recovery process of the traffic volume and air pollutants during the post-lockdown period was also explored. The traffic volume was confirmed to return to background levels within four months, but air pollutants were found to recover randomly. This study highlights the exponential impact of traffic volume on air quality changes, which is of great significance to air pollution control in terms of traffic restriction policy. Supplementary Information: The online version contains supplementary material available at 10.1007/s00477-022-02351-7.

2.
Front Chem ; 8: 294, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32373589

RESUMO

Porous materials are deemed to be capable for promoting hydrate formation, while for the purpose of hydrate-based gas storage, those systems containing porous materials often cannot meet the requirement of high storage density. To increase the storage density, an adsorption-hydration sequence method was designed and systematically examined in this study. Methane storage and release in ZIF-8 slurries and fixed beds were investigated. The ZIF-8 retained 98.62%, while the activated carbon lost 62.17% of their adsorption capacities in slurry. In ZIF-8 fixed beds, methane storage density of 127.41 V/Vbed was acquired, while the gas loss during depressurization accounted for 21.50% of the gas uptake. In the ZIF-8 slurry, the storage density was effectively increased with the adsorption-hydration sequence method, and the gas loss during depressurization was much smaller than that in fixed beds. In the slurry, the gas uptake and gas loss decreased with the decrease of the chilling temperature. The largest gas uptake and storage density of 78.84 mmol and 133.59 V/Vbed were acquired in the slurry with ZIF-8 content of 40 wt.% at 268.15 K, meanwhile, the gas loss just accounted for 14.04% of the gas uptake. Self-preservation effect was observed in the slurry, and the temperature for the slowest gas release was found to be 263.15 K, while the release ratio at 10 h reached to 43.42%. By increasing the back pressure, the gas release rate could be effectively controlled. The gas release ratio at 1.1 MPa at 10 h was just 11.08%. The results showed that the application of adsorption-hydration sequence method in ZIF-8 slurry is a prospective manner for gas transportation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA