Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Eur Heart J ; 45(4): 287-305, 2024 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-37992083

RESUMO

BACKGROUND AND AIMS: Stanford type A aortic dissection (AD) is a degenerative aortic remodelling disease marked by an exceedingly high mortality without effective pharmacologic therapies. Smooth muscle cells (SMCs) lining tunica media adopt a range of states, and their transformation from contractile to synthetic phenotypes fundamentally triggers AD. However, the underlying pathomechanisms governing this population shift and subsequent AD, particularly at distinct disease temporal stages, remain elusive. METHODS: Ascending aortas from nine patients undergoing ascending aorta replacement and five individuals undergoing heart transplantation were subjected to single-cell RNA sequencing. The pathogenic targets governing the phenotypic switch of SMCs were identified by trajectory inference, functional scoring, single-cell regulatory network inference and clustering, regulon, and interactome analyses and confirmed using human ascending aortas, primary SMCs, and a ß-aminopropionitrile monofumarate-induced AD model. RESULTS: The transcriptional profiles of 93 397 cells revealed a dynamic temporal-specific phenotypic transition and marked elevation of the activator protein-1 (AP-1) complex, actively enabling synthetic SMC expansion. Mechanistically, tumour necrosis factor signalling enhanced AP-1 transcriptional activity by dampening mitochondrial oxidative phosphorylation (OXPHOS). Targeting this axis with the OXPHOS enhancer coenzyme Q10 or AP-1-specific inhibitor T-5224 impedes phenotypic transition and aortic degeneration while improving survival by 42.88% (58.3%-83.3% for coenzyme Q10 treatment), 150.15% (33.3%-83.3% for 2-week T-5224), and 175.38% (33.3%-91.7% for 3-week T-5224) in the ß-aminopropionitrile monofumarate-induced AD model. CONCLUSIONS: This cross-sectional compendium of cellular atlas of human ascending aortas during AD progression provides previously unappreciated insights into a transcriptional programme permitting aortic degeneration, highlighting a translational proof of concept for an anti-remodelling intervention as an attractive strategy to manage temporal-specific AD by modulating the tumour necrosis factor-OXPHOS-AP-1 axis.


Assuntos
Doenças da Aorta , Dissecção Aórtica , Benzofenonas , Isoxazóis , Doenças Vasculares , Humanos , Fator de Transcrição AP-1 , Aminopropionitrilo , Estudos Transversais , Dissecção Aórtica/genética , Doenças da Aorta/patologia , Doenças Vasculares/patologia , Miócitos de Músculo Liso/patologia , Miócitos de Músculo Liso/fisiologia , Fatores de Necrose Tumoral
2.
Scand J Immunol ; 98(2): e13275, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38441378

RESUMO

The coronavirus disease 2019 (COVID-19) pandemic underlines a persistent threat of respiratory tract infectious diseases and warrants preparedness for a rapid response. At present, COVID-19 has had a serious social impact and imposed a heavy global burden on public health. The exact pathogenesis of COVID-19 has not been fully elucidated. Since the outbreak of COVID-19, a renewed attention has been brought to Toll-like receptors (TLRs). Available data and new findings have demonstrated that the interaction of human TLRs and SARS-CoV-2 is a vital mediator of COVID-19 immunopathogenesis. TLRs such as TLR2, 4, 7 and 8 are potentially important in viral combat and activation of immunity in patients with COVID-19. Therapeutics targeting TLRs are currently considered promising options against the pandemic. A number of TLR-targeting immunotherapeutics are now being investigated in preclinical studies and different phases of clinical trials. In addition, innovative vaccines based on TLRs under development could be a promising approach for building a new generation of vaccines to solve the current challenges. In this review, we summarize recent progress in the role of TLRs in COVID-19, focusing the new candidate drugs targeting TLRs, the current technology and potential paths forward for employing TLR agonists as vaccine adjuvants.


Assuntos
COVID-19 , Vacinas , Humanos , SARS-CoV-2 , Surtos de Doenças , Receptores Toll-Like
3.
Analyst ; 148(17): 4195-4202, 2023 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-37534860

RESUMO

Palladium (Pd) is an important heavy metal with excellent catalytic properties and widely used in organic chemistry and the pharmaceutical industry. Efficient and convenient analytical techniques for Pd are urgently needed due to the hazardous effects of Pd on the environment and human health. Herein, we have developed five new ratiometric probes for the selective detection of Pd0 based on the Pd-catalyzed Tsuji-Trost reaction. Among them, the F-substituted probe PF-Pd showed the largest spectral shift (148 nm) and the most sensitive response (detection limit 2.11 nM). PF-Pd was employed to determine Pd0 in tap water or lake water samples, which presented satisfactory accuracy and precision. In addition, profiting from its distinct colorimetric response, visual detection of Pd0 was performed on PF-Pd loaded test strips or in field soil samples. Furthermore, fluorescence imaging of living 4T1 cells demonstrated that PF-Pd is suitable for imaging of intracellular Pd0. The good analytical performance of PF-Pd may enable it to be widely used in the convenient, rapid, sensitive and selective detection of Pd0 in environmental or biological analysis.


Assuntos
Corantes Fluorescentes , Paládio , Humanos , Corantes Fluorescentes/toxicidade , Corantes Fluorescentes/química , Paládio/química , Colorimetria/métodos , Imagem Óptica , Água/química
4.
Org Biomol Chem ; 21(22): 4672-4682, 2023 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-37219018

RESUMO

Phototherapy is a promising approach for the treatment of cancers and other diseases. So far, many photosensitizers have been developed for photodynamic therapy (PDT) or photothermal therapy (PTT). However, it remains a challenge to develop a system for synergistic PDT and PTT with specific targeting and real-time fluorescence tracking. Herein, we designed a multifunctional BODIPY derivative, Lyso-BDP, for synergistic PDT and PTT against tumors. Lyso-BDP was composed of three parts: (1) the BODIPY fluorophore was selected as a theranostic core, (2) a morpholine group modified on meso-BODIPY served as a lysosome-targeting unit for enhancing the antitumor effect, and (3) N,N-diethyl-4-vinylaniline was attached to the BODIPY core to extend its wavelength to the near-infrared region. Finally, Lyso-BDP shows near-infrared absorption and emission, photosensitizing activity, lysosomal targeting, and synergistic PDT and PTT effects, and effectively kills cancer cells both in vitro and in vivo. Therefore, our study demonstrates that Lyso-BDP can serve as a promising photosensitizer in the therapy of cancer with potential clinical application prospects.


Assuntos
Nanopartículas , Neoplasias , Fotoquimioterapia , Humanos , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Terapia Fototérmica , Fototerapia , Neoplasias/tratamento farmacológico , Linhagem Celular Tumoral
5.
Anal Bioanal Chem ; 415(12): 2209-2215, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36856821

RESUMO

In this work, a simple and sensitive electrochemical sensor was proposed for the detection of ß-site amyloid precursor protein cleaving enzyme 1 (BACE1) activity. Firstly, the BACE1 specific peptide was modified onto the Au electrode to graft a single-strand DNA with polycytosine DNA sequence (dC12) via amide bonding between peptide and dC12. Because the dC12 is abundant in phosphate groups, thus it can react with molybdate to form redox molybdophosphate, which can generate electrochemical current. Using BACE1 as a model peptidase, the proposed sensor shows a linear response range from 1 to 15 U/mL and limit of detection down to 0.05 U/mL. The sensor displays good performance for the BACE1 activity detection in human serum samples, which may have potential applications in the clinical diagnostics of Alzheimer's disease.


Assuntos
Doença de Alzheimer , Secretases da Proteína Precursora do Amiloide , Humanos , Secretases da Proteína Precursora do Amiloide/metabolismo , Ácido Aspártico Endopeptidases/metabolismo , Doença de Alzheimer/metabolismo , Peptídeos/genética , Sequência de Bases , Peptídeos beta-Amiloides/metabolismo
6.
Mol Cell Biochem ; 477(1): 241-254, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34657240

RESUMO

DAL-1/4.1B is frequently absent in lung cancer tissues, which is significantly related to the occurrence and development of lung cancer. In this research, we found that DAL-1/4.1B affected the uptake of exosomes by lung cancer cells. When the expression of DAL-1/4.1B increased and decreased, the ability of exosome uptake enhanced and attenuated correspondingly. And we found that when cells were treated with different vesicles uptake inhibitors (chlorpromazine, methyl-ß-cyclodextrin (MßCD), cytochalasin D, chloroquine and heparin) and heparinase (HSPE), only heparin and HSPE counteracted the uptake enhancement effect caused by DAL-1/4.1B. Therefore, we speculated that DAL-1/4.1B might promote the uptake of exosomes through the heparan sulfate proteoglycans (HSPGs) pathway. After screening the expression of HSPGs and HSPE in H292 cells, the expression of heparan sulfate proteoglycan 2 (HSPG2) increased with overexpression of DAL-1/4.1B and decreased with knockdown of DAL-1/4.1B. Meanwhile, exosome uptake decreased with HSPG2 knockdown in H292 and DAL-1/4.1B-overexpressing H292 cells. Moreover, knockdown of DAL-1/4.1B and HSPG2 in lung cancer A549 cells resulted in a similar decrease in exosome uptake, and the expression of HSPG2 was also decreased with DAL-1/4.1B knockdown. These results indicated that HSPG2 directly affected the uptake of exosomes, while DAL-1/4.1B positively affected the expression of HSPG2. Therefore, DAL-1/4.1B may promote cellular adhesion and inhibit migration in cancer cells.


Assuntos
Exossomos/metabolismo , Proteoglicanas de Heparan Sulfato/metabolismo , Neoplasias Pulmonares/metabolismo , Proteínas dos Microfilamentos/metabolismo , Proteínas de Neoplasias/metabolismo , Células A549 , Exossomos/genética , Proteoglicanas de Heparan Sulfato/genética , Humanos , Neoplasias Pulmonares/genética , Células MCF-7 , Proteínas dos Microfilamentos/genética , Proteínas de Neoplasias/genética
7.
Org Biomol Chem ; 21(1): 153-162, 2022 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-36472095

RESUMO

The disordered tubulin C-terminal tail (CTT), which possesses a higher degree of heterogeneity, is the target for the interaction of many proteins and cellular components. Compared to the seven well-described binding sites of microtubule-targeting agents (MTAs) that localize on the globular tubulin core, tubulin CTT is far less explored. Therefore, tubulin CTT can be regarded as a novel site for the development of MTAs with distinct biochemical and cell biological properties. Here, we designed and synthesized linear and cyclic peptides containing multiple arginines (RRR), which are complementary to multiple acidic residues in tubulin CTT. Some of them showed moderate induction and promotion of tubulin polymerization. The most potent macrocyclic compound 1f was found to bind to tubulin CTT and thus exert its bioactivity. Such RRR containing compounds represent a starting point for the discovery of tubulin CTT-targeting agents with therapeutic potential.


Assuntos
Antineoplásicos , Tubulina (Proteína) , Tubulina (Proteína)/metabolismo , Microtúbulos/metabolismo , Antineoplásicos/farmacologia , Sítios de Ligação , Moduladores de Tubulina/farmacologia , Moduladores de Tubulina/metabolismo
8.
Bioorg Chem ; 129: 106203, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36265352

RESUMO

Farnesoid X receptor (FXR) ligands have been actively pursued to treat metabolic disorders, liver and bile diseases, among others. Starting from a widely occurring natural product, oleanolic acid (OA), we discovered potent and selective FXR modulator from the 12ß-oxygenated OA alkyl esters, with the assistance of molecular modeling. The representative compound 7b modulated some FXR downstream genes involved in glucose and lipid metabolism in cells, and significantly improved hyperglycemia in KKay fat mice fed with high fat diet, through the reduction of mRNA expression of gluconeogenesis genes PEPCK and G6Pase. This study provides a new series of selective FXR modulator, as well as the in vitro and in vivo evidence for their potential to improve hyperglycemia in diabetic mice through FXR antagonism.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Hiperglicemia , Hipoglicemiantes , Ácido Oleanólico , Receptores Citoplasmáticos e Nucleares , Animais , Camundongos , Ácidos e Sais Biliares/metabolismo , Diabetes Mellitus Experimental/induzido quimicamente , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Ésteres/química , Ésteres/farmacologia , Ésteres/uso terapêutico , Hiperglicemia/tratamento farmacológico , Fígado/metabolismo , Camundongos Endogâmicos C57BL , Ácido Oleanólico/química , Ácido Oleanólico/farmacologia , Ácido Oleanólico/uso terapêutico , Receptores Citoplasmáticos e Nucleares/antagonistas & inibidores , Hipoglicemiantes/química , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico , Diabetes Mellitus Tipo 2/tratamento farmacológico , Gluconeogênese/efeitos dos fármacos
9.
Nanomedicine ; 45: 102585, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35901958

RESUMO

Outer membrane vesicles (OMVs) of Escherichia coli as nanoscale spherical vesicles have been recently used in cancer therapy as drug carriers. However, most of them need complicated methods to load cargos. Herein, we proposed an inexpensive and potentially mass-produced method for the preparation of OMV engineered with over-expressed pre-miRNA. In this work, we found that OMV can be released and inherit over-expressed tRNALys-pre-miRNA from mother E. coli that directly used for the tumor therapy. The eukaryotic cells infection experiments revealed that the over-expressed pre-miRNA inside OMV could be released and processed into mature miRNAs with the aid of the camouflage of "tRNA scaffold". Moreover, the group in vivo treated with targeted OMVtRNA-pre-miR-126 obviously inhibited the expression of target oncogenic CXCR4, and significantly restrain the proliferation of breast cancer tissues. Together, these findings indicated that the OMV-based platform is a versatile and powerful strategy for personalized tumor therapy directly and specificity.


Assuntos
Vesículas Extracelulares , MicroRNAs , Neoplasias , Proteínas da Membrana Bacteriana Externa , Portadores de Fármacos/metabolismo , Escherichia coli/genética , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias/tratamento farmacológico
10.
Int J Mol Sci ; 23(20)2022 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-36293406

RESUMO

Photodynamic therapy (PDT) is a promising noninvasive medical technology that has been approved for the treatment of a variety of diseases, including bacterial and fungal infections, skin diseases, and several types of cancer. In recent decades, many photosensitizers have been developed and applied in PDT. However, PDT is still limited by light penetration depth, although many near-infrared photosensitizers have emerged. The chemiluminescence-mediated PDT (CL-PDT) system has recently received attention because it does not require an external light source to achieve targeted PDT. This review focuses on the rational design of organic CL-PDT systems. Specifically, PDT types, light wavelength, the chemiluminescence concept and principle, and the design of CL-PDT systems are introduced. Furthermore, chemiluminescent fraction examples, strategies for combining chemiluminescence with PDT, and current cellular and animal applications are highlighted. Finally, the current challenges and possible solutions to CL-PDT systems are discussed.


Assuntos
Neoplasias , Fotoquimioterapia , Animais , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Luminescência , Neoplasias/tratamento farmacológico
11.
Molecules ; 27(11)2022 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-35684397

RESUMO

Photodynamic therapy (PDT) has emerged as a new antitumor modality. Hypoxia, a vital characteristic of solid tumors, can be explored to stimulate the fluorescence response of photosensitizers (PSs). Considering the characteristics of PDT, the targeting of organelles employing PS would enhance antitumor effects. A new multifunctional cyanine-based PS (CLN) comprising morpholine and nitrobenzene groups was prepared and characterized. It generated fluorescence in the near-infrared (NIR) region in the presence of sodium dithionite (Na2S2O4) and nitroreductase (NTR). The response mechanism of CLN was well investigated, thus revealing that its obtained reduction product was CLNH. The obtained fluorescence and singlet oxygen quantum yield of CLNH were 8.65% and 1.60%, respectively. Additionally, the selective experiment for substrates indicated that CLN exhibited a selective response to NTR. Thus, CLN fluorescence could be selectively switched on and its fluorescence intensity increased, following a prolonged stay in hypoxic cells. Furthermore, fluorescence colocalization demonstrated that CLN could effectively target lysosomes. CLN could generate reactive oxygen species and kill tumor cells (IC50 for 4T1 cells was 7.4 µM under a hypoxic condition), following its response to NTR. NIR imaging and targeted PDT were finally applied in vivo.


Assuntos
Fotoquimioterapia , Fármacos Fotossensibilizantes , Humanos , Hipóxia/tratamento farmacológico , Lisossomos , Nitrorredutases , Imagem Óptica/métodos , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/farmacologia
12.
Molecules ; 27(19)2022 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-36235160

RESUMO

Using biomass-derived solvents in various organic reactions is challenging for the fine chemicals industry. We herein report a Pd/C catalyzed Suzuki-Miyaura reaction in water extract of suaeda salsa (WES) without using external phosphine ligand, base, and organic solvent. The cross-coupling reactions were carried out in a basic WES medium with a broad substrate scope and wide functional group tolerance. Furthermore, the high purity of solid biaryl products can be obtained by column chromatography or filtration.


Assuntos
Chenopodiaceae , Paládio , Catálise , Ligantes , Paládio/química , Solventes , Água/química
13.
Molecules ; 27(21)2022 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-36364062

RESUMO

Hypochlorous acid (HOCl) is a reactive substance that reacts with most biomolecules and is essential in physiological and pathological processes. Abnormally elevated HOCl levels may cause inflammation and other disease responses. To further understand its key role in inflammation, HOCl must be detected in situ. Here, we designed a hydroxytricyanopyrrole-based small-molecule fluorescent probe (HTCP-NTC) to monitor and identify trace amounts of HOCl in biological systems. In the presence of HOCl, HTCP-NTC released hydroxyl groups that emit strong fluorescence covering a wide wavelength range from the visible to near-infrared region owing to the resumption of the intramolecular charge transfer process. Additionally, HTCP-NTC demonstrated a 202-fold fluorescence enhancement accompanied by a large Stokes shift and a low detection limit (21.7 nM). Furthermore, HTCP-NTC provided a rapid response to HOCl within 18 s, allowing real-time monitoring of intracellular HOCl. HTCP-NTC exhibited rapid kinetics and biocompatibility, allowing effective monitoring of the exogenous and endogenous HOCl fluctuations in living cells. Finally, based on fluorescence imaging, HTCP-NTC is a potential method for understanding the relationship between inflammation and HOCl.


Assuntos
Corantes Fluorescentes , Ácido Hipocloroso , Humanos , Imagem Óptica , Inflamação
14.
Proc Natl Acad Sci U S A ; 115(17): E3950-E3958, 2018 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-29632183

RESUMO

Understanding olfaction at the molecular level is challenging due to the lack of crystallographic models of odorant receptors (ORs). To better understand the molecular mechanism of OR activation, we focused on chiral (R)-muscone and other musk-smelling odorants due to their great importance and widespread use in perfumery and traditional medicine, as well as environmental concerns associated with bioaccumulation of musks with estrogenic/antiestrogenic properties. We experimentally and computationally examined the activation of human receptors OR5AN1 and OR1A1, recently identified as specifically responding to musk compounds. OR5AN1 responds at nanomolar concentrations to musk ketone and robustly to macrocyclic sulfoxides and fluorine-substituted macrocyclic ketones; OR1A1 responds only to nitromusks. Structural models of OR5AN1 and OR1A1 based on quantum mechanics/molecular mechanics (QM/MM) hybrid methods were validated through direct comparisons with activation profiles from site-directed mutagenesis experiments and analysis of binding energies for 35 musk-related odorants. The experimentally found chiral selectivity of OR5AN1 to (R)- over (S)-muscone was also computationally confirmed for muscone and fluorinated (R)-muscone analogs. Structural models show that OR5AN1, highly responsive to nitromusks over macrocyclic musks, stabilizes odorants by hydrogen bonding to Tyr260 of transmembrane α-helix 6 and hydrophobic interactions with surrounding aromatic residues Phe105, Phe194, and Phe207. The binding of OR1A1 to nitromusks is stabilized by hydrogen bonding to Tyr258 along with hydrophobic interactions with surrounding aromatic residues Tyr251 and Phe206. Hydrophobic/nonpolar and hydrogen bonding interactions contribute, respectively, 77% and 13% to the odorant binding affinities, as shown by an atom-based quantitative structure-activity relationship model.


Assuntos
Cicloparafinas/química , Modelos Moleculares , Receptores Odorantes/química , Células HEK293 , Humanos , Ligação de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Mutagênese Sítio-Dirigida , Estabilidade Proteica , Estrutura Secundária de Proteína , Receptores Odorantes/genética , Receptores Odorantes/metabolismo
15.
Pharmacol Res ; 144: 227-234, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31028905

RESUMO

Ischemic stroke is a major cause of mortality and disability worldwide. To date there is no ideal effective treatment. 3, 14, 19-triacetyl andrographolide (CX-10) is a new molecule entity derived from andrographolide. The aim of the present study was to evaluate the neuroprotection of CX-10 against experimental cerebral ischemia. The anti-inflammation of CX-10 was screened using LPS-induced inflammation in vitro and in vivo. Rats were subjected to 1.5 h of middle cerebral occlusion (MCAO) and then reperfusion for 72 h. The infarct size was evaluated by TTC staining, and the behavioral disturbance was evaluated, and inflammatory cytokines and anti-oxidant enzymes in brain tissues were examined. Western blot was used to analyze the expression of proteins. The results showed that CX-10 exerted potent anti-inflammatory and anti-oxidation activities, which significantly inhibited LPS-induced TNF-α and NO release, lowered TNF-α and IL-1ß levels in the brain, meanwhile increased activities of SOD, CAT and GSH-P × . The effect of CX-10 was equivalent to that of dexamethasone, and was obviously superior to that of andrographolide. CX-10 exhibited a neuroprotective effects, manifested as reducing infarct size, improving neurological function and reducing motor impairments. Furthermore, western blot analysis revealed that treatment with CX-10 down-regulated the expression of TLR4, NF-κB, TNF-α and iNOS, induced Nrf2 and HO-1 expression. Overall, CX-10 has a favorable neuroprotection in ischemic brain injury. The mechanism may involve inhibition of TLR4/NF-κB signaling pathway and upregulation of Nrf2/ARE signaling pathway. All these indicated that CX-10 is likely to be a promising agent for ischemic stroke.


Assuntos
Diterpenos/uso terapêutico , Infarto da Artéria Cerebral Média/tratamento farmacológico , Fármacos Neuroprotetores/uso terapêutico , Animais , Diterpenos/química , Infarto da Artéria Cerebral Média/imunologia , Masculino , Camundongos Endogâmicos BALB C , Fator 2 Relacionado a NF-E2/imunologia , NF-kappa B/imunologia , Fármacos Neuroprotetores/química , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Receptores Toll-Like/imunologia
16.
Phytother Res ; 32(1): 103-114, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29071768

RESUMO

Renal ischaemia-reperfusion (I/R) injury is the most common cause of acute kidney injury (AKI). Peritubular capillary (PTC) endothelium damages are an important pathogenesis during I/R AKI. Salvianolic acid A (SAA) possesses various pharmacological activities. The study investigated whether SAA ameliorated I/R AKI through protecting against PTC endothelium damages. Male Sprague-Dawley rats were divided into 6 groups: control, sham, I/R, and I/R plus SAA (2.5, 5, 10 mg/kg) groups. Rats were subjected to bilateral renal pedicle clamping for 60 min, and killed at 24 hr after reperfusion. Kidney injury, PTC endothelium damages and factors affecting PTC endothelium were evaluated. SAA significantly decreased blood urea nitrogen and serum creatinine levels, and reduced urine kidney injury molecule-1 concentration. Simultaneously, SAA alleviated histological damages, prevented PTC endothelium damages, preserved the density of PTC and improved renal hypoxia. Furthermore, SAA inhibited platelet activation, elevated Klotho protein expression and up-regulated vascular endothelial growth factor A expression. Overall, SAA has protective effects on AKI induced by I/R. Preventing PTC endothelium damages and preserving PTC integrity to improve the renal hypoxia may be the ways for SAA to ameliorate AKI. All these indicate that SAA is likely to be a promising agent for AKI.


Assuntos
Injúria Renal Aguda/tratamento farmacológico , Ácidos Cafeicos/química , Medicamentos de Ervas Chinesas/química , Endotélio Vascular/efeitos dos fármacos , Rim/patologia , Lactatos/química , Traumatismo por Reperfusão/tratamento farmacológico , Injúria Renal Aguda/patologia , Animais , Endotélio Vascular/metabolismo , Endotélio Vascular/patologia , Citometria de Fluxo , Masculino , Ratos , Ratos Sprague-Dawley , Traumatismo por Reperfusão/patologia
17.
Cell Physiol Biochem ; 42(3): 1213-1226, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28683457

RESUMO

BACKGROUND/AIMS: MicroRNA-9 (miR-9) plays important roles in nervous system diseases such as glioblastoma and neurodegenerative disorders. However, how miR-9 contributes to dementia requires further study. In this study, we evaluated the role of miR-9 in dementia and the molecular mechanisms underlying its effects. METHODS: A rat model of dementia was created by occlusion of the bilateral common carotid artery (2VO) for 8 weeks. Learning and memory were assessed using the Morris Water Maze (MWM). MicroRNA expression profiling was performed according to a protocol provided by LC Sciences, and quantitative real-time PCR (qRT-PCR) was used to detect the level of miR-9. Transmission electron microscopy (TEM) and hematoxylin-eosin (HE) staining were used to assess pathological changes in brain tissue. Western blot and immunofluorescence were employed to detect the expression of ß-site APP cleaving enzyme 1 (BACE1) and c-AMP response element-binding protein (CREB). RESULTS: Learning and memory were significantly impaired in 2VO rats, and these changes were accompanied by neuronal loss and glial activation in brain tissues. miR-9 was greatly upregulated in both the hippocampus and cortex of rats following 2VO. Knockdown of endogenous miR-9 via lentiviral vector-mediated delivery of its antisense molecule (lenti-pre-AMO-miR-9) reduced the vulnerability to dementia, reversed the increase in BACE1 expression, and ameliorated the reduction in CREB expression triggered by 2VO. BACE1 protein levels were significantly increased, but CREB protein levels were significantly decreased in the presence of miR-9 in cultured neonatal rat neurons (NRNs). AMO-miR-9 rescued the upregulation of BACE1 and downregulation of CREB elicited by miR-9 in rats. Dual luciferase assay experiments showed that overexpression of miR-9 inhibited the expression of CREB by targeting its 3'UTR domain. CREB protein was downregulated by miR-9 overexpression which was reversed by miR-9 inhibition in cultured NRNs. TEM imaging showed that miR-9 caused damage to NRNs, which was reversed by addition of AMO-miR-9. CONCLUSION: We conclude that miR-9 plays an important role in regulating the process of dementia induced by 2VO in rats by increasing BACE1 expression via downregulation of CREB.


Assuntos
Secretases da Proteína Precursora do Amiloide/genética , Ácido Aspártico Endopeptidases/genética , Demência/genética , Regulação da Expressão Gênica , MicroRNAs/genética , Animais , Encéfalo/irrigação sanguínea , Encéfalo/metabolismo , Encéfalo/patologia , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Demência/etiologia , Demência/patologia , Modelos Animais de Doenças , Regulação para Baixo , Técnicas de Silenciamento de Genes , Infarto da Artéria Cerebral Média/complicações , Aprendizagem , Masculino , Memória , Ratos , Ratos Sprague-Dawley , Regulação para Cima
18.
Chemistry ; 22(24): 8137-51, 2016 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-27149882

RESUMO

The difluoromethylene (CF2 ) group has a strong tendency to adopt corner over edge locations in aliphatic macrocycles. In this study, the CF2 group has been introduced into musk relevant macrocyclic ketones. Nine civetone and five muscone analogues have been prepared by synthesis for structure and odour comparisons. X-ray studies indeed show that the CF2 groups influence ring structure and they give some insight into the preferred ring conformations, triggering a musk odour as determined in a professional perfumery environment. The historical conformational model of Bersuker and co-workers for musk fragrance generally holds, and structures that become distorted from this consensus, by the particular placement of the CF2 groups, lose their musk fragrance and become less pleasant.


Assuntos
Cicloparafinas/química , Perfumes/química , Cristalografia por Raios X , Cicloparafinas/síntese química , Halogenação , Isomerismo , Conformação Molecular , Odorantes/análise , Perfumes/síntese química
19.
Molecules ; 21(5)2016 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-27164077

RESUMO

Total synthesis of naturally occurring spirobisnaphthalene palmarumycin CP17 and its methoxy analogues was first achieved through Friedel-Crafts acylation, Wolff-Kishner reduction, intramolecular cyclization, ketalization, benzylic oxidation, and demethylation using the inexpensive and readily available methoxybenzene, 1,2-dimethoxybenzene and 1,4-dimethoxybenzene and 1,8-dihydroxynaphthalene as raw materials. Demethylation with (CH3)3SiI at ambient temperature resulted in ring A aromatization and acetal cleavage to give rise to binaphthyl ethers. The antifungal activities of these spirobisnaphthalene derivatives were evaluated, and the results revealed that 5 and 9b exhibit EC50 values of 9.34 µg/mL and 12.35 µg/mL, respectively, against P. piricola.


Assuntos
Antifúngicos/síntese química , Naftalenos/síntese química , Compostos de Espiro/síntese química , Acilação , Anisóis/química , Antifúngicos/química , Antifúngicos/farmacologia , Ciclização , Fungos/efeitos dos fármacos , Estrutura Molecular , Naftalenos/química , Naftalenos/farmacologia , Compostos de Espiro/química , Compostos de Espiro/farmacologia
20.
Molecules ; 21(7)2016 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-27438811

RESUMO

Geniposide (GE) is the main bioactive component of Gardeniae Fructus. The hepatotoxicity of geniposide limited clinical application. In order to get a new geniposide derivative that has less hepatotoxicity and still possesses the antidepressant activity, a new C-1 hydroxyl methylation derivative named methyl genipin (MG) was synthesized from geniposide. In the present study, we demonstrated that MG did not increase the liver index, alanine aminotransferase (ALT) and aspirate aminotransferase (AST). Histopathological examination suggested that no toxic damages were observed in rats treated orally with MG (0.72 mmol/kg). More importantly, a 7-day treatment with MG at 0.13, 0.26, and 0.52 mmol/kg/day could reduce the duration of immobility. It showed that the antidepressant-like effects of MG were similar to GE in the tail suspension test and the forced swim test. Furthermore, we found MG could be detected in the brain homogenate of mice treated orally with MG 0.52 mmol/kg/day for 1 day by HPLC. The area under the curve (AUC) of MG in the brain homogenate was enhanced to 21.7 times that of GE. The brain amount and distribution speed of MG were improved significantly after oral administration. This study demonstrated that MG possessed the antidepressant effects and could cross the blood-brain barrier, but had less hepatotoxicity.


Assuntos
Antidepressivos/farmacologia , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/metabolismo , Iridoides/farmacologia , Fígado/efeitos dos fármacos , Animais , Antidepressivos/efeitos adversos , Antidepressivos/química , Peso Corporal/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Cromatografia Líquida de Alta Pressão , Iridoides/administração & dosagem , Iridoides/efeitos adversos , Iridoides/química , Fígado/patologia , Estrutura Molecular , Permeabilidade , Ratos , Distribuição Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA