Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mar Drugs ; 22(5)2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38786604

RESUMO

Marine sponges of the genus Spongia have proven to be unabated sources of novel secondary metabolites with remarkable scaffold diversities and significant bioactivities. The discovery of chemical substances from Spongia sponges has continued to increase over the last few years. The current work provides an up-to-date literature survey and comprehensive insight into the reported metabolites from the members of the genus Spongia, as well as their structural features, biological activities, and structure-activity relationships when available. In this review, 222 metabolites are discussed based on published data from the period from mid-2015 to the beginning of 2024. The compounds are categorized into sesquiterpenes, diterpenes, sesterterpenes, meroterpenes, linear furanoterpenes, steroids, alkaloids, and other miscellaneous substances. The biological effects of these chemical compositions on a vast array of pharmacological assays including cytotoxic, anti-inflammatory, antibacterial, neuroprotective, protein tyrosine phosphatase 1B (PTP1B)-inhibitory, and phytoregulating activities are also presented.


Assuntos
Poríferos , Poríferos/metabolismo , Poríferos/química , Animais , Humanos , Relação Estrutura-Atividade , Produtos Biológicos/farmacologia , Produtos Biológicos/química , Metabolismo Secundário
2.
Fish Shellfish Immunol ; 139: 108926, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37406893

RESUMO

The greasyback shrimp, Metapenaeus ensis, suffers from ammonia-N stress during intensive factory aquaculture. Optimizing ammonia-N stress tolerance has become an important issue in M. ensis breeding. The metabolic and adaptive mechanisms of ammonia-N toxicity in M. ensis have not been comprehensively understood yet. In this study, a large number of potential simple sequence repeats (SSRs) in the transcriptome of M. ensis were identified. Differentially expressed genes (DEGs) in the gill and hepatopancreas at 24 h post-challenges under high concentrations of ammonia-N treatment were detected. We obtained 20,108,851-27,681,918 clean reads from the control and high groups, assembled and clustered a total of 103,174 unigenes with an average of 876 bp and an N50 of 1189 bp. Comparative transcriptome analyses identified 2000 different expressed genes in the gill and 2010 different expressed genes in the hepatopancreas, a large number of which were related to immune function, oxidative stress, metabolic regulation, and apoptosis. The results suggest that M. ensis may counteract ammonia-N toxicity at the transcriptome level by increasing the expression of genes related to immune stress and detoxification metabolism, and that selected genes may serve as molecular indicators of ammonia-N. By exploring the genetic basis of M. ensis' ammonia-N stress adaptation, we constructed the genetic networks for ammonia-N adaptation. These findings will accelerate the understanding of M. ensis' ammonia-N adaptation, contribute to the research of future breeding, and promote the level of factory aquaculture of M. ensis.


Assuntos
Penaeidae , Animais , Amônia/toxicidade , Amônia/metabolismo , Brânquias , Perfilação da Expressão Gênica , Transcriptoma
3.
Mar Drugs ; 21(10)2023 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-37888458

RESUMO

Marine soft corals are prolific sources of various natural products that have served as a wealthy reservoir of diverse chemical scaffolds with potential as new drug leads. The genus Litophyton contains almost 100 species but only a small proportion of them has been chemically investigated, which calls for more attentions from global researchers. In the current work, 175 secondary metabolites have been discussed, drawing from published data spanning almost five decades, up to July 2023. The studied species of the genus Litophyton resided in various tropical and temperate regions and encompassed a broad range of biologically active natural products including terpenes, steroids, nitrogen-containing metabolites, lipids, and other metabolites. A wide spectrum of pharmacological effects of these compounds had been evaluated, such as cytotoxic, antiviral, antibacterial, antifungal, anti-malarial, antifeedant, anti-inflammatory, molluscicidal, PTP1B inhibitory, insect growth inhibitory, and neuroprotective activities. This review aims to offer an up-to-date survey of the literature and provide a comprehensive understanding of the chemical structures, taxonomical distributions, and biological activities of the reported metabolites from the title genus whenever available.


Assuntos
Antozoários , Antineoplásicos , Produtos Biológicos , Animais , Terpenos/química , Antibacterianos/farmacologia , Antineoplásicos/metabolismo , Antozoários/química , Produtos Biológicos/química
4.
Genomics ; 114(4): 110415, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35718088

RESUMO

Procambarus clarkii is an important economic species in China, and exhibit heat and cold tolerance in the main culture regions. To understand the mechanisms, we analyzed the hepatopancreas transcriptome of P. clarkii treated at 10 °C, 25 °C, and 30 °C, then 2092 DEGs and 6929 DEGs were found in 30 °C stress group and 10 °C stress group, respectively. KEGG pathway enrichment results showed that immune pathway is the main stress pathway for 10 °C treatment and metabolic pathway is the main response pathway for 30 °C treatment, which implies low temperature stress induces the damage of the immune system and increases the susceptibility of bacteria while the body response to high temperature stress through metabolic adjustment. In addition, flow cytometry proved that both high and low temperature stress caused different degrees of apoptosis of hemocytes, and dynamic transcription heat map analysis also identified the differential expression of HSPs family genes and apoptosis pathway genes under different heat stresses. This indicates that preventing damaged protein misfolding and accelerating cell apoptosis are necessary mechanisms for P. clarkii to cope with high and low temperature stress. Our research has deepened our understanding of the complex molecular mechanisms of P. clarkii in response to acute temperature stress, and provided a potential strategy for aquatic animals to relieve environmental duress.


Assuntos
Astacoidea , Transcriptoma , Animais , Astacoidea/genética , Astacoidea/metabolismo , Perfilação da Expressão Gênica , Hepatopâncreas/metabolismo , Temperatura
5.
Fish Shellfish Immunol ; 131: 1166-1172, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36410647

RESUMO

The decrease of seawater pH can affect the metabolism, acid-base balance, immune response and immunoprotease activity of aquatic animals, leading to aquatic animal stress, impairing the immune system of aquatic animals and weakening disease resistance, etc. In this study, we performed high-throughput sequencing analysis of the hepatopancreas transcriptome library of low pH stress penaeus monodon, and after sequencing quality control, a total of 43488612-56271828 Clean Reads were obtained, and GO annotation and KEGG pathway enrichment analysis were performed on the obtained Clean Reads, and a total of 395 DEGs were identified. we mined 10 differentially expressed and found that they were significantly enriched in the Metabolic pathways (ko01100), Biosynthesis of secondary metabolites (ko01110), Nitrogen metabolism (ko00910) pathways, such as PIGA, DGAT1, DGAT2, UBE2E on Metabolic pathways; UGT, GLT1, TIM genes on Biosynthesis of secondary metabolites; CA, CA2, CA4 genes on Nitrogen metabolism, are involved in lipid metabolism, induction of oxidative stress and inflammation in the muscular body of spot prawns. These genes play an important role in lipid metabolism, induction of oxidative stress and inflammatory response in the muscle of the shrimp. In summary, these genes provide valuable reference information for future breeding of low pH-tolerant shrimp.


Assuntos
Hepatopâncreas , Penaeidae , Animais , Proteínas de Artrópodes/genética , Proteínas de Artrópodes/metabolismo , Perfilação da Expressão Gênica/veterinária , Transcriptoma , Nitrogênio/metabolismo , Concentração de Íons de Hidrogênio
6.
Fish Shellfish Immunol ; 128: 7-18, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35843525

RESUMO

Members of the E74-like factor (ELF) subfamily are involved in the immune stress process of organisms by regulating immune responses and the development of immune-related cells. PmE74 of Penaeus monodon was characterized and functionally analyzed in this study. The full length of PmE74 was 3106 bp, with a 5'-UTR of 297 bp, and a 3'-UTR of 460 bp. The ORF (Open reading frame) was 2349 bp and encoded 782 amino acids. Domain analysis showed that PmE74 contains a typical Ets domain. Multiple sequence alignment and phylogenetic tree analysis showed that PmE74 clustered with Litopenaeus vannamei E74 and displayed significant similarity (98.98%). PmE74 was expressed in all tissues tested in P. monodon, with the highest levels of expression observed in the testis, intestine, and epidermis. Different pathogen stimulation studies have revealed that PmE74 expression varies in response to different pathogen stimuli. A 96-h acute low salt stress study revealed that PmE74 in the hepatopancreas was upregulated and downregulated in the salinity 17 group and considerably downregulated in the salinity 3 group, whereas PmE74 in gill tissue was considerably downregulated in both groups. Further, by knocking down PmE74 and learning the trends of its linkage genes PmAQP1, PmNKA, PmE75, PmFtz-f1, PmEcR, and PmRXR in response to low salt stress, it was further indicated that PmE74 could have a vital role in the regulation of low salt stress. The SNP test revealed that PmE74-In1-53 was significantly associated with low salt tolerance traits in P. monodon (P < 0.05). The findings of this study can aid in the advancement of molecular marker-assisted breeding in P. monodon, as well as provide fundamental data and methodologies for further investigation of its low salt tolerance strains in P. monodon.


Assuntos
Penaeidae , Sequência de Aminoácidos , Aminoácidos/genética , Animais , Sequência de Bases , Penaeidae/genética , Filogenia , Polimorfismo de Nucleotídeo Único , Tolerância ao Sal/genética
7.
Mar Drugs ; 21(1)2022 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-36662203

RESUMO

The soft coral Sarcophyton trocheliophorum, which was frequently encountered on Indo-Pacific and Red Sea coral reefs, furnished a wealth of secondary metabolites. Notably, terpenoids dominated the chemical profile of this species. In this review, we summarized the discovery of 156 terpenoids from the soft coral S. trocheliophorum specimens in different geographical areas. The structures comprised 13 terpenoidal classes with various functionalities. We covered the era from the first report of S. trocheliophorum-derived metabolites in 1976 up to October 2022. The biological effects of these chemical compositions on a vast array of potential pharmacological activities such as protein tyrosine phosphatase 1B (PTP1B) inhibitory, neuroprotective, cytotoxic, anti-inflammatory, antibacterial, antivirus, and immunomodulatory activities were also presented. This review also revealed an immense demand to explore the terpene biosynthetic gene clusters of this species besides the chemo- and bio-investigations.


Assuntos
Antozoários , Antineoplásicos , Diterpenos , Animais , Antozoários/química , Terpenos/farmacologia , Terpenos/metabolismo , Antineoplásicos/química , Oceano Índico , Diterpenos/química , Estrutura Molecular
8.
Int J Mol Sci ; 23(20)2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36293554

RESUMO

Doublesex (Dsx) is a polymorphic transcription factor of the DMRTs family, which is involved in male sex trait development and controls sexual dimorphism at different developmental stages in arthropods. However, the transcriptional regulation of the Dsx gene is largely unknown in decapods. In this study, we reported the cDNA sequence of PmDsx in Penaeus monodon, which encodes a 257 amino acid polypeptide. It shared many similarities with Dsx homologs and has a close relationship in the phylogeny of different species. We demonstrated that the expression of the male sex differentiation gene Dsx was predominantly expressed in the P. monodon testis, and that PmDsx dsRNA injection significantly decreased the expression of the insulin-like androgenic gland hormone (IAG) and male sex-determining gene while increasing the expression of the female sex-determining gene. We also identified a 5'-flanking region of PmIAG that had two potential cis-regulatory elements (CREs) for the PmDsx transcription. Further, the dual-luciferase reporter analysis and truncated mutagenesis revealed that PmDsx overexpression significantly promoted the transcriptional activity of the PmIAG promoter via a specific CRE. These results suggest that PmDsx is engaged in male reproductive development and positively regulates the transcription of the PmIAG by specifically binding upstream of the promoter of the PmIAG. It provides a theoretical basis for exploring the sexual regulation pathway and evolutionary dynamics of Dmrt family genes in P. monodon.


Assuntos
Insulinas , Penaeidae , Animais , Masculino , Feminino , Penaeidae/genética , Sequência de Aminoácidos , DNA Complementar , Sequência de Bases , Filogenia , Fatores de Transcrição/genética , Hormônios , Aminoácidos/genética , Insulinas/genética
9.
Fish Shellfish Immunol ; 98: 887-898, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31770641

RESUMO

The aim of the present study was to investigate the function of the beta integrin (PmItgb) in Penaeus monodon. The 3011 bp cDNA sequence of PmItgb was cloned from P. monodon using rapid amplification of cDNA ends (RACE) PCR. Phylogenetic tree analyses indicated that the amino acid sequence of PmItgb should be merged into Fenneropenaeus chinensis (93%). Quantitative real-time PCR (q RT-PCR) revealed that PmItgb mRNA was highly expressed in the hemocytes. In addition, with regard to developmental stages, PmItgb showed significantly higher expression in oosperm, nauplius IV, zoea I and III, and post larval stages than that in other development stages. PmItgb expression in the shrimp epidermis was higher in the postmolt (B) stage, and lower in other molting stages. We also found that Vibrio harveyi and V. anguillarum challenge enhanced PmItgb expression in the hepatopancreas and gills. When PmItgb was inhibited, innate immunity-related genes such as ALF, crustin 1, crustin 7, penaeidin 3, and penaeidin 5 were significantly down-regulated. Furthermore, we demonstrated that PmItgb knock-down by specific dsRNA reduced bacterial clearance. In high ammonia nitrogen concentrations, PmItgb was significantly up-regulated in the hepatopancreas and gills. After PmItgb was silenced, the rate of mortality owing to high ammonia nitrogen concentrations decreased; the expression of related anti-apoptotic genes was up-regulated, and that of the apoptotic genes was slightly down-regulated. These results suggested that PmItgb may be involved in shrimp innate immunity and mediate apoptosis of hepatopancreatic cells induced by high ammonia nitrogen environments.


Assuntos
Regulação da Expressão Gênica/imunologia , Imunidade Inata/genética , Cadeias beta de Integrinas/genética , Cadeias beta de Integrinas/imunologia , Penaeidae/genética , Penaeidae/imunologia , Sequência de Aminoácidos , Animais , Proteínas de Artrópodes/química , Proteínas de Artrópodes/genética , Proteínas de Artrópodes/imunologia , Sequência de Bases , Perfilação da Expressão Gênica , Cadeias beta de Integrinas/química , Filogenia , Alinhamento de Sequência , Vibrio/fisiologia
10.
Mol Reprod Dev ; 86(3): 265-277, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30618055

RESUMO

Molting is controlled by ecdysteroids, which are synthesized and secreted by the Y-organ in crustaceans. Ecdysone inducible gene, E75, is an early-response gene in the 20-hydroxyecdysone (20E) signaling pathway, with crucial roles in arthropod development. Complementary DNA (cDNA) encoding Penaeus monodon E75 (PmE75) was cloned using RT-PCR and RACE. PmE75 cDNA was 3526 bp long and encoded a 799-amino acid protein. Tissue distribution analysis showed that PmE75 was expressed ubiquitously in selected tissues, and was relatively abundant in the epidermis, muscle, and hepatopancreas. Developmental expression revealed that PmE75 was expressed throughout its life cycle. Silencing PmE75 significantly decreased PmE75 expression. Shrimps injected with PBS and dsGFP started molting on Day 7 and had almost completed molting on Day 9, whereas dsPmE75-injected shrimp presented no signs of molting. These results suggested that PmE75 might be involved in molting. In situ hybridization results support this hypothesis. To explore the role of 20E and eyestalks in the regulation of molting in P. monodon, exogenous 20E injection and eyestalk ablation (ESA) were performed, and showed that 20E can induce the transcription and expression of PmE75 in the hepatopancreas, epidermis, and muscle, which were significantly elevated after ESA. These results provide further insights into our understanding of molting.


Assuntos
Proteínas de Ligação a DNA/genética , Ecdisona/metabolismo , Muda/genética , Penaeidae/crescimento & desenvolvimento , Penaeidae/genética , Receptores de Esteroides/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Epiderme/metabolismo , Hepatopâncreas/metabolismo , Músculos/metabolismo , Alinhamento de Sequência , Ativação Transcricional/genética
11.
Fish Shellfish Immunol ; 90: 188-198, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31028898

RESUMO

C-type lectins (CTLs) are pattern recognition receptors (PRRs) that are important in invertebrate innate immunity for the recognition and elimination of pathogens. Although they were reported in many shrimp, C-type lectins subfamily contain a large number of members with different functions that need to research in deep. In this present study, a new type of CTL, PmCL1 with 861 bp long full-length cDNA, that encodes a protein with 164-amino acid from a 495-bp open reading frame, was isolated and characterized from tiger shrimp (Penaeus monodon). The mRNA transcript of PmCL1 showed the highest expression in the hepatopancreas, whereas it was barely detected in the ovary. After the shrimp were stimulated by Vibrio harveyi and Vibrio anguillarum, PmCL1 expression in the hepatopancreas and gill was significantly upregulated. A carbohydrate-binding assay revealed the specificity of PmCL1 for pathogen-associated molecular patterns (PAMPs) that included peptidoglycan (PGN) and lipopolysaccharide (LPS), and saccharides that included d-glucose, galactosamine, α-lactose, treholose, and d-mannose. Recombinant PmCL1 agglutinated gram-positive (Staphylococcus aureus) and gram-negative bacteria (V. harveyi, V. anguillarum, Vibrio alginolyticus, Vibrio parahemolyticus, Vibrio vulnificus, and Aeromonas hydrophila) in the presence of calcium ions and enhanced the efficiency of clearing the invading bacteria. Collectively, our results suggested that PmCL1 might play an important role as a pattern recognition receptor (PRR) in the immune response towards pathogen infections, as well as the response towards ammonia nitrogen stress.


Assuntos
Regulação da Expressão Gênica/imunologia , Imunidade Inata/genética , Lectinas Tipo C/genética , Lectinas Tipo C/imunologia , Penaeidae/genética , Penaeidae/imunologia , Aeromonas hydrophila/fisiologia , Sequência de Aminoácidos , Amônia/efeitos adversos , Animais , Proteínas de Artrópodes/química , Proteínas de Artrópodes/genética , Proteínas de Artrópodes/imunologia , Sequência de Bases , Perfilação da Expressão Gênica , Lectinas Tipo C/química , Dose Letal Mediana , Nitrogênio/efeitos adversos , Filogenia , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Staphylococcus aureus/fisiologia , Estresse Fisiológico , Vibrio/fisiologia
12.
Mediators Inflamm ; 2019: 5647074, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31885496

RESUMO

Gout is a prevalent form of aseptic inflammation caused by the deposition of monosodium urate (MSU) crystals in joints or tissues. Triggering receptor expressed on myeloid cell-1 (TREM-1) is a superimmunoglobulin receptor expressed on innate immune cells including granulocytes, monocytes, and macrophages. TREM-1 serves as a link between innate immunity and adaptive immunity, playing a crucial role in regulating inflammation and immune response. The purpose of this study was to investigate the potential role of TREM-1 in THP-1 cells and peripheral blood mononuclear cells (PBMCs) from patients with gouty arthritis (GA). In the current study, we found that the mRNA and protein levels of TREM-1 increased in PBMCs from GA patients and soluble TREM-1 in plasma as well. In addition, an increased level of TREM-1 was observed in THP-1 treated with monosodium urate (MSU) in vitro, along with upregulation of proinflammatory cytokines. Moreover, upon specific inhibition of TREM-1, Toll-like receptor 4 (TLR-4), and myeloid differentiation factor 88 (MyD88), the levels of MyD88 and proinflammatory cytokines were decreased after MSU challenge in THP-1 cells. Interestingly, inhibition of TLR-4 could enhance the effect of TREM-1 inhibitor in MSU-induced inflammation. Taken together, our findings suggested that TREM-1 could accelerate MSU-induced acute inflammation. Inhibition of TREM-1 may provide a new strategy for alleviating acute gouty inflammation.


Assuntos
Artrite Gotosa/imunologia , Artrite Gotosa/metabolismo , Inflamação/imunologia , Inflamação/metabolismo , Receptor Gatilho 1 Expresso em Células Mieloides/metabolismo , Adulto , Artrite Gotosa/genética , Western Blotting , Ensaio de Imunoadsorção Enzimática , Feminino , Humanos , Inflamação/induzido quimicamente , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/metabolismo , Masculino , Pessoa de Meia-Idade , Ligação Proteica , Reação em Cadeia da Polimerase em Tempo Real , Células THP-1 , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo , Receptor Gatilho 1 Expresso em Células Mieloides/genética , Ácido Úrico/toxicidade
13.
Inflammopharmacology ; 27(1): 47-56, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30600470

RESUMO

BACKGROUND: Resveratrol exerts an anti-inflammatory effect on collagen-induced arthritis and osteoarthritis in rats via activation of sirtuin 1 (SIRT1). Autophagy can be induced by resveratrol and leads to amelioration of interleukin-1 beta (IL-1ß) release in vitro. We aimed to determine the anti-inflammatory mechanisms of resveratrol in patients with gout. METHODS: Blood samples were obtained from patients with acute gout, intercritical gout (IG) and healthy controls (HC). The mRNA and protein levels of SIRT1 and nuclear factor-kappa B (NF-kB) p65 were determined in peripheral blood mononuclear cells (PBMCs) lysate from these patients. In the in vitro experiment, SIRT1, autophagy-related genes (beclin-1 and microtubule-associated protein 1 light-chain 3) and key genes involved in the gouty inflammatory pathway, including NF-κB p65, NLR family pyrin domain containing 3 (NLRP3), caspase-1 and IL-1ß, were determined in PBMCs lysate or plasma from IG patients exposed to monosodium urate (MSU) crystals with or without resveratrol. RESULTS: The mRNA and protein levels of SIRT1 were downregulated in PBMCs from gout patients in comparison with HC. In the in vitro experiment, the protein levels of SIRT1 were downregulated in PBMCs from IG patients exposed to MSU crystals and were restored by resveratrol in a dose-dependent manner. Furthermore, high doses of resveratrol ameliorated the release of the inflammatory cytokine IL-1ß. In addition, the mRNA levels of NLRP3 and NF-κB p65 were regulated by resveratrol, but caspase-1 and IL-1ß were not. Furthermore, resveratrol promoted MSU-induced autophagy in PBMCs from patients with gout. CONCLUSION: These findings suggest that resveratrol ameliorates gouty inflammation via upregulation of SIRT1 to promote autophagy in patients with gout.


Assuntos
Autofagia/efeitos dos fármacos , Gota/tratamento farmacológico , Inflamação/tratamento farmacológico , Resveratrol/uso terapêutico , Sirtuína 1/metabolismo , Regulação para Cima/efeitos dos fármacos , Caspase 1/metabolismo , Citocinas/metabolismo , Regulação para Baixo/efeitos dos fármacos , Feminino , Gota/metabolismo , Humanos , Inflamação/metabolismo , Interleucina-1beta/metabolismo , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/metabolismo , Masculino , Pessoa de Meia-Idade , NF-kappa B/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Transdução de Sinais/efeitos dos fármacos
14.
Fish Shellfish Immunol ; 75: 17-26, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29410275

RESUMO

The G protein-coupled receptors (GPCRs) composed a superfamily that played an important role in physiological processes of crustaceans, with multiple functions such as growth and development, acting as a defense against stimulations from external factors. In this paper, one kind of GPCRs were identified from Penaeus monodon, called PmGPCR, included an open reading frame (ORF) of 1113 bp. Bioinformatic analysis showed that PmGPCR protein had the typical structure of seven transmembrane domains (7TM), especially the special Asp-Arg-Try motif (DRY motif) between the third transmembrane structures (TM3) and the second intracellular loops (IL-2) which can prove that PmGPCR belongs to the rhodopsin-like family. The analyses of phylogenetic tree indicated that the amino acid sequence of PmGPCR should be merged into Procambarus clarkiic with high identity (98%). Quantitative real-time PCR (q RT-PCR) revealed that PmGPCR mRNA was highly expressed in hepatopancreas, abdominal ganglia and lymph, in which it was significantly higher than that of other tissues (P < 0.05). In addition, the expression of PmGPCR was analyzed during three days post-stimulation with the gram-positive/negative bacteria, the mRNA expression level increased after challenged with gram - positive bacteria in hepatopancreas, lymph and intestines. During the development stages, PmGPCR showed significantly higher expression in nauplius, zoea III, mysis III and post larvae stages than that in other development stages. Meanwhile, the highest transcripts expression of PmGPCR in abdominal ganglia, hepatopancreas, lymph and intestines respectively appeared at D0, D1, D2 and D3/D4 stages of molting. High or low concentration of ammonia nitrogen up-regulated the expression level of PmGPCR at the initial stage in hepatopancreas and gill, and then down-regulated at 48 h. These results indicated PmGPCR may mediate the pathways that involved in growth and development process, survival in the adversity, in addition, provided the useful data to research GPCR-mediated physiological and biological process and explain the mechanisms to defense pathogens and anti-stress in shrimp.


Assuntos
Amônia/efeitos adversos , Regulação da Expressão Gênica/imunologia , Imunidade Inata/genética , Penaeidae/genética , Penaeidae/imunologia , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/imunologia , Sequência de Aminoácidos , Animais , Proteínas de Artrópodes/química , Proteínas de Artrópodes/genética , Proteínas de Artrópodes/imunologia , Sequência de Bases , Relação Dose-Resposta a Droga , Perfilação da Expressão Gênica , Hepatopâncreas/imunologia , Hepatopâncreas/fisiologia , Filogenia , Distribuição Aleatória , Receptores Acoplados a Proteínas G/química , Alinhamento de Sequência , Estresse Fisiológico/genética , Estresse Fisiológico/imunologia
15.
Fish Shellfish Immunol ; 83: 162-170, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30205201

RESUMO

Ammonia is a major aquatic environmental pollutant that negatively impacts shrimp health and commercial productivity. However, we currently do not fully understand the underlying molecular mechanisms of ammonia stress in shrimp. We therefore performed transcriptomic analysis of hepatopancreas from black tiger shrimp (Penaeus monodon) treated with ammonia-stress. We obtained 146,410,174 and 115,241,048 clean reads for the control and treatment groups, respectively. A total of 64,475 unigenes with an average length of 1275 bp and a N50 value of 2158 bp were assembled. A comparative transcriptome analysis identified 3462 differentially expressed genes, 177 of which are highly homologous with known proteins in aquatic species. Most of these genes showing the expression changes were related to immune function. Some significantly down-regulated genes are involved in purine metabolism and other metabolic pathways, which suggests that purineolytic capacity is an ammonia detoxification process in P. monodon, and metabolic depression is a strategy to reduce shrimp exposure to ammonia. Additionally, ammonia stress altered the expression patterns of key apoptosis genes (Bcl-xL, PERK, caspase 7, and caspase 10), confirmed that ammonia-stress induce oxidative stress and eventually even apoptosis. We also found evidence for the involvement of antioxidant defense in response to oxidative imbalance, given the regulation of peroxiredoxin 1, SOD, and CAT under ammonia stress. In conclusion, our study clarifies shrimp defensive response to ammonia toxicity and should benefit efforts to breed more ammonia-tolerant varieties.


Assuntos
Amônia/efeitos adversos , Apoptose , Estresse Oxidativo , Penaeidae/genética , Penaeidae/imunologia , Estresse Fisiológico , Animais , Proteínas de Artrópodes/genética , Poluentes Ambientais/efeitos adversos , Perfilação da Expressão Gênica , Hepatopâncreas/fisiologia , Imunidade Inata , Transcriptoma
16.
Fish Shellfish Immunol ; 72: 117-123, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29100985

RESUMO

Chitinases are crucial enzymes for crustaceans. Previous researches had already revealed that chitinases play important roles in digestion, molting and defense against viruses. In the present study, a chitinase cDNA was identified from black tiger shrimp (Penaeus monodon) and designated as PmChi-5. The full-length PmChi-5 cDNA was 2860 bp in size, containing an open reading frame (ORF) of 1731 bp that encoded a protein of 576 amino acids with a deduced molecular weight of 64.8 kDa. Expression of the PmChi-5 mRNA was ubiquitously detected in all selected tissues, with the highest level in the gill and hepatopancreas. PmChi-5 was expressed throughout the whole larvae stages, and the highest level at Mysis3 stage, which indicated that PmChi-5 may be involved in larval metamorphosis. After challenged with Streptococcus agalactiae and Vibrio harveyi, the transcripts of PmChi-5 were found to be up-regulated significantly both in hepatopancreas and gill. Besides, the ammonia nitrogen stress treatment was also carried out, PmChi-5 transcripts were significantly changed in hepatopancreas and gill. The results showed that PmChi-5 may be involved in molting, larval metamorphosis, the immune defenses to pathogens infection and ammonia-N stress.


Assuntos
Quitinases/genética , Imunidade Inata , Nitrogênio/efeitos adversos , Penaeidae/imunologia , Streptococcus agalactiae/fisiologia , Transcriptoma , Vibrio/fisiologia , Amônia/efeitos adversos , Animais , Proteínas de Artrópodes/genética , Proteínas de Artrópodes/imunologia , Quitinases/imunologia , Perfilação da Expressão Gênica , Larva/genética , Larva/crescimento & desenvolvimento , Larva/imunologia , Penaeidae/genética , Penaeidae/crescimento & desenvolvimento , Estresse Fisiológico , Poluentes Químicos da Água/efeitos adversos
17.
Fish Shellfish Immunol ; 62: 31-40, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28089896

RESUMO

Chitinase is a multi-gene family, which play important physiological roles in crustaceans, involved in several biological processes, including digestion, molting and defense against viruses. In the present study, a chitinase-4 gene (PmChi-4) was cloned from Penaeus monodon by rapid amplification of cDNA ends (RACE). The full length of PmChi-4 cDNA was 2178 bp, including an 1815 bp open reading frame (ORF) which encoded 604 amino acid residues. The predicted PmChi-4 protein was 67.7 kDa and shared 61%-88% identity with the type of Chi-4s from other crustaceans. Quantitative real-time (qRT-PCR) analysis indicated that PmChi-4 was expressed ubiquitously with the high expression level in hepatopancreas. PmChi-4 was expressed throughout the whole larvae stages, and the highest level of PmChi-4 transcripts was detected at Mysis3 stage, which indicated that PmChi-4 may be involved in larval metamorphosis. In order to know whether PmChi-4 was related to the immune response of shrimp, Streptococcus agalactiae and Vibrio harveyi were chosen to challenge the shrimp, PmChi-4 transcripts were significantly increased and reached to the maximum at 6 h in hepatopancreas and at 12 h in gill, respectively. The results suggested that PmChi-4 participated in the immune defenses to pathogen infection. Besides, the ammonia nitrogen stress treatment was also carried out, PmChi-4 transcripts were significantly decreased in hepatopancreas and gill and the result showed that PmChi-4 may be involved in ammonia nitrogen stress in P. monodon. Overall, our present study lay a foundation for further research into the biological function and regulation of chitinase in P. monodon.


Assuntos
Amônia/farmacologia , Proteínas de Artrópodes/química , Proteínas de Artrópodes/genética , Quitinases/genética , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Penaeidae/genética , Estresse Fisiológico/efeitos dos fármacos , Sequência de Aminoácidos , Amônia/metabolismo , Animais , Proteínas de Artrópodes/metabolismo , Sequência de Bases , Quitinases/química , Quitinases/metabolismo , Perfilação da Expressão Gênica , Imunidade Inata/genética , Larva/genética , Larva/imunologia , Larva/microbiologia , Muda , Penaeidae/enzimologia , Penaeidae/imunologia , Penaeidae/microbiologia , Filogenia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Distribuição Aleatória , Alinhamento de Sequência , Streptococcus agalactiae/fisiologia , Estresse Fisiológico/genética , Vibrio/fisiologia
18.
Mol Biol Rep ; 43(6): 549-61, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27112755

RESUMO

The tumor suppressor p53 is a sequence-specific transcription factor, whose target genes can regulate genomic stability, the cellular response to DNA damage and cell-cycle progression. In the present study, the full-length complementary DNA (cDNA) sequence of p53 gene from Penaeus monodon (Pmp53) was cloned by the technology of rapid amplification of cDNA ends (RACE). The cDNA of Pmp53 was 2239 bp, encoding a protein of 450 amino acids with calculated molecular weight of 50.62 kDa. The temporal expression of Pmp53 in different tissues (ovary, heart, intestine, brain, muscles, stomach and gills) and different developmental stages of ovary was investigated by real-time quantitative PCR (RT-qPCR). The lowest expression level of Pmp53 was observed in the stomach, while the highest expression level was detected in the brain. During the ovary development stages, the expression level of Pmp53 reached the peak at stage III. RNA interference (RNAi) and serotonin (5-hydroxytryptamine, 5-HT) injection experiments were conducted to study the expression profile of Pmp53 and PmCDK2 (cyclin-dependent kinase 2, CDK2). Knocked down of Pmp53 by dsRNA-p53 was sequence-specific and successful. Expression levels of Pmp53 and PmCDK2 in ovary of P. monodon were significantly increased at 12-96 h post 5-HT injection. These results indicate that Pmp53 may be involved in the regulation of ovarian development of P. monodon.


Assuntos
Proteínas de Artrópodes/genética , Penaeidae/metabolismo , Interferência de RNA , Proteína Supressora de Tumor p53/genética , Sequência de Aminoácidos , Animais , Proteínas de Artrópodes/metabolismo , Sequência de Bases , Feminino , Expressão Gênica , Hepatopâncreas/metabolismo , Masculino , Especificidade de Órgãos , Ovário/crescimento & desenvolvimento , Ovário/metabolismo , Penaeidae/genética , Fosforilação , Filogenia , Processamento de Proteína Pós-Traducional , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteína Supressora de Tumor p53/metabolismo
19.
Fish Physiol Biochem ; 41(6): 1449-61, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26159320

RESUMO

The retinoid X receptors (RXRs) are involved in the skeletal development and other biological process such as blood vessel formation and metabolism. Partial sequences of RXRα and ß genes were obtained, and their expressions were quantified on golden pompano Trachinotus ovatus at 28 days post hatching (DPH) to explore the molecular response to nutritional manipulation in fish larvae. As live food, Artemia nauplii were separately enriched with Nannochloropsis and Algamac 3080 and non-enriched Artemia nauplii (control) for fish feeding. The expressions of RXRs were detected in the embryos and fish larvae at early stages, suggesting that the skeletal development in golden pompano initiated before yolk re-sorption completion. Fish fed non-enriched Artemia nauplii ended up with higher jaw malformation. The highest specific growth rate was obtained when fish were fed with the Artemia nauplii enriched with Algamac 3080, and the lowest growth rate was observed when fish were fed with unenriched Artemia nauplii. The highest survival was obtained when fish were fed with non-enriched or Nannochloropsis-enriched Artemia nauplii. This study indicates that the use of enriched formula for Artemia nauplii can significantly affect the expression levels of RXRs and jaw malformation of golden pompano larvae, but there is no clear correlation between RXRs expressions and malformation rates when fish are subjected to nutrient challenge.


Assuntos
Ração Animal/análise , Proteínas de Peixes/metabolismo , Perciformes/crescimento & desenvolvimento , Receptores X de Retinoides/metabolismo , Animais , Artemia , Sequência de Bases , Clonagem Molecular , Proteínas de Peixes/genética , Regulação da Expressão Gênica no Desenvolvimento , Anormalidades Maxilomandibulares , Larva/genética , Larva/crescimento & desenvolvimento , Dados de Sequência Molecular , Perciformes/genética , Receptores X de Retinoides/genética
20.
J Inflamm Res ; 17: 947-955, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38370467

RESUMO

Rheumatic disease is a disease which is not yet fully clarified to etiology and also involved in a local pathological injury or systemic disease. With the continuous improvement of clinical medical research in recent years, the development process of rheumatic diseases has been gradually elucidated; with the intensely study of epigenetics, it is realized that environmental changes can affect genetics, among which histone acetylation is one of the essential mechanisms in epigenetics. Histone deacetylases (HDACs) play an important role in regulating gene expression in various biological processes, including differentiation, development, stress response, and injury. HDACs are involved in a variety of physiological processes and are promising drug targets in various pathological conditions, such as cancer, cardiac and neurodegenerative diseases, inflammation, metabolic and immune disorders, and viral and parasitic infections. In this paper, we reviewed the roles of HDACs in rheumatic diseases in terms of their classification and function.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA