Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 62(15): e202300011, 2023 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-36786341

RESUMO

A general and mild nickel-catalyzed enantioselective C(sp2 )-P cross-coupling for synthesizing P-stereogenic phosphine oxides has been developed. The asymmetric alkenylation/arylation of racemic secondary phosphine oxides with alkenyl/aryl bromides generated P-stereogenic phosphine oxides with high yields and enantioselectivities. Various functional groups were tolerated, and the applications of this method were demonstrated through late-stage functionalization and product transformations.

2.
Angew Chem Int Ed Engl ; 62(46): e202313112, 2023 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-37770407

RESUMO

Catalytic asymmetric methods for the synthesis of synthetically versatile P-stereogenic building blocks offer an efficient and practical approach for the diversity-oriented preparation of P-chiral phosphorus compounds. Herein, we report the first nickel-catalyzed synthesis of P-stereogenic secondary aminophosphine-boranes by the asymmetric addition of primary phosphines to azo compounds. We further demonstrate that the P-H and P-N bonds on these phosphanyl hydrazine building blocks can be reacted sequentially and stereospecifically to access various P-stereogenic compounds with structural diversity.

3.
Int J Mol Sci ; 23(15)2022 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-35955534

RESUMO

A key aspect of cytokine-induced changes as observed in sepsis is the dysregulated activation of endothelial cells (ECs), initiating a cascade of inflammatory signaling leading to leukocyte adhesion/migration and organ damage. The therapeutic targeting of ECs has been hampered by concerns regarding organ-specific EC heterogeneity and their response to inflammation. Using in vitro and in silico analysis, we present a comprehensive analysis of the proteomic changes in mouse lung, liver and kidney ECs following exposure to a clinically relevant cocktail of proinflammatory cytokines. Mouse lung, liver and kidney ECs were incubated with TNF-α/IL-1ß/IFN-γ for 4 or 24 h to model the cytokine-induced changes. Quantitative label-free global proteomics and bioinformatic analysis performed on the ECs provide a molecular framework for the EC response to inflammatory stimuli over time and organ-specific differences. Gene Ontology and PANTHER analysis suggest why some organs are more susceptible to inflammation early on, and show that, as inflammation progresses, some protein expression patterns become more uniform while additional organ-specific proteins are expressed. These findings provide an in-depth understanding of the molecular changes involved in the EC response to inflammation and can support the development of drugs targeting ECs within different organs. Data are available via ProteomeXchange (identifier PXD031804).


Assuntos
Células Endoteliais , Doenças Vasculares , Animais , Citocinas/metabolismo , Células Endoteliais/metabolismo , Endotélio Vascular/metabolismo , Inflamação/metabolismo , Camundongos , Proteômica , Fator de Necrose Tumoral alfa/metabolismo , Doenças Vasculares/metabolismo
4.
FASEB J ; 34(2): 2691-2702, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31908006

RESUMO

All drugs recently developed in rodent models to treat inflammatory disease have failed in clinical trials. We therefore used our novel biomimetic microfluidic assay (bMFA) to determine whether the response of murine cells to inflammatory activation or anti-inflammatory treatment is predictive of the response in human cells. Under physiologically relevant flow conditions, permeability and transendothelial electrical resistance (TEER) of human or mouse lung microvascular endothelial cells (HLMVEC or MLMVEC), and neutrophil-endothelial cell interaction was measured. The differential impact of a protein kinase C-delta TAT peptide inhibitor (PKCδ-i) was also quantified. Permeability of HLMVEC and MLMVEC was similar under control conditions but tumor necrosis factor α (TNF-α) and PKCδ-i had a significantly higher impact on permeability of HLMVEC. TEER across HLMVEC was significantly higher than MLMVEC, but PKCδ-i returned TEER to background levels only in human cells. The kinetics of N-formylmethionyl-leucyl-phenylalanine (fMLP)-mediated neutrophil migration was significantly different between the two species and PKCδ-i was significantly more effective in attenuating human neutrophil migration. However, human and mouse neutrophil adhesion patterns to microvascular endothelium were not significantly different. Surprisingly, while intercellular adhesion molecule 1 (ICAM-1) was significantly upregulated on activated HLMVEC, it was not significantly upregulated on activated MLMVEC. Responses to activation and anti-inflammatory treatment in mice may not always be predictive of their response in humans.


Assuntos
Adesão Celular/fisiologia , Comunicação Celular/fisiologia , Endotélio Vascular/metabolismo , Neutrófilos/metabolismo , Animais , Movimento Celular/efeitos dos fármacos , Células Cultivadas , Células Endoteliais/metabolismo , Humanos , Sepse/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
5.
Int J Mol Sci ; 22(15)2021 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-34360536

RESUMO

The endothelium is the inner layer of all blood vessels and it regulates hemostasis. It also plays an active role in the regulation of the systemic inflammatory response. Systemic inflammatory disease often results in alterations in vascular endothelium barrier function, increased permeability, excessive leukocyte trafficking, and reactive oxygen species production, leading to organ damage. Therapeutics targeting endothelium inflammation are urgently needed, but strong concerns regarding the level of phenotypic heterogeneity of microvascular endothelial cells between different organs and species have been expressed. Microvascular endothelial cell heterogeneity in different organs and organ-specific variations in endothelial cell structure and function are regulated by intrinsic signals that are differentially expressed across organs and species; a result of this is that neutrophil recruitment to discrete organs may be regulated differently. In this review, we will discuss the morphological and functional variations in differently originated microvascular endothelia and discuss how these variances affect systemic function in response to inflammation. We will review emerging in vivo and in vitro models and techniques, including microphysiological devices, proteomics, and RNA sequencing used to study the cellular and molecular heterogeneity of endothelia from different organs. A better understanding of microvascular endothelial cell heterogeneity will provide a roadmap for developing novel therapeutics to target the endothelium.


Assuntos
Anti-Inflamatórios/farmacologia , Endotélio Vascular/efeitos dos fármacos , Inflamação/tratamento farmacológico , Animais , Humanos
6.
J Nanobiotechnology ; 18(1): 48, 2020 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-32183823

RESUMO

BACKGROUND: Specific targeting ability and good cell penetration are two critical requirements of tumor-targeted delivery systems. In the present work, we developed a novel matrix metalloprotein-triggered, cell-penetrating, peptide-modified, star-shaped nanoparticle (NP) based on a functionalized copolymer (MePEG-Peptide-Tri-CL), with the peptide composed of GPLGIAG (matrix metalloprotein-triggered peptide for targeted delivery) and r9 (cell-penetrating peptide for penetration improvement) to enhance its biological specificity and therapeutic effect. RESULTS: Based on the in vitro release study, a sustained release profile was achieved for curcumin (Cur) release from the Cur-P-NPs at pH 7.4. Furthermore, the release rate of Cur was accelerated in the enzymatic reaction. MTT assay results indicated that the biocompatibility of polymer NPs (P-NPs) was inversely related to the NP concentration, while the efficiency toward tumor cell inhibition was positively related to the Cur-P-NP concentration. In addition, Cur-P-NPs showed higher fluorescence intensity than Cur-NPs in tumor cells, indicating improved penetration of tumor cells. An in vivo biodistribution study further demonstrated that Cur-P-NPs exhibited stronger targeting to A549 xenografts than to normal tissue. Furthermore, the strongest tumor growth inhibition (76.95%) was observed in Cur-P-NP-treated A549 tumor xenograft nude mice, with slight pulmonary toxicity. CONCLUSION: All results demonstrated that Cur-P-NP is a promising drug delivery system that possesses specific enzyme responsiveness for use in anti-tumor therapy.


Assuntos
Peptídeos Penetradores de Células/farmacologia , Sistemas de Liberação de Medicamentos/métodos , Metaloproteínas/farmacologia , Nanopartículas/administração & dosagem , Animais , Linhagem Celular Tumoral , Peptídeos Penetradores de Células/química , Curcumina/farmacologia , Portadores de Fármacos , Liberação Controlada de Fármacos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Nanopartículas/química , Tamanho da Partícula , Polímeros/química , Distribuição Tecidual , Ensaios Antitumorais Modelo de Xenoenxerto
7.
Mar Drugs ; 18(6)2020 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-32549252

RESUMO

Chitosan nanoparticles (CS-NPs) are under increasing investigation for the delivery of therapeutic proteins, such as vaccines, interferons, and biologics. A large number of studies have been taken on the characteristics of CS-NPs, and very few of these studies have focused on the microstructure of protein-loaded NPs. In this study, we prepared the CS-NPs by an ionic gelation method, and bovine serum albumin (BSA) was used as a model protein. Dynamic high pressure microfluidization (DHPM) was utilized to post-treat the nanoparticles so as to improve the uniformity, repeatability and controllability. The BSA-loaded NPs were then characterized for particle size, Zeta potential, morphology, encapsulation efficiency (EE), loading capacity (LC), and subsequent release kinetics. To improve the long-term stability of NPs, trehalose, glucose, sucrose, and mannitol were selected respectively to investigate the performance as a cryoprotectant. Furthermore, trehalose was used to obtain re-dispersible lyophilized NPs that can significantly reduce the dosage of cryoprotectants. Multiple spectroscopic techniques were used to characterize BSA-loaded NPs, in order to explain the release process of the NPs in vitro. The experimental results indicated that CS and Tripolyphosphate pentasodium (TPP) spontaneously formed the basic skeleton of the NPs through electrostatic interactions. BSA was incorporated in the basic skeleton, adsorbed on the surface of the NPs (some of which were inlaid on the NPs), without any change in structure and function. The release profiles of the NPs showed high consistency with the multispectral results.


Assuntos
Quitosana/química , Crioprotetores/química , Portadores de Fármacos/química , Nanopartículas/química , Produtos Biológicos/administração & dosagem , Produtos Biológicos/química , Temperatura Baixa/efeitos adversos , Composição de Medicamentos/métodos , Liberação Controlada de Fármacos , Estabilidade de Medicamentos , Armazenamento de Medicamentos/métodos , Interferons/administração & dosagem , Interferons/química , Tamanho da Partícula , Estabilidade Proteica , Soroalbumina Bovina/administração & dosagem , Soroalbumina Bovina/química , Soroalbumina Bovina/farmacocinética , Vacinas/administração & dosagem , Vacinas/química
8.
Sensors (Basel) ; 20(1)2020 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-31935902

RESUMO

In this work, ammonium pyrrolidine dithiocarbamate (APDC) was used as a surface etchant to modify CdTe/CdS core-shell quantum dots (QDs). The APDC etchant combines with the cadmium ions (Cd2+) on the surface of the QDs, resulting in the formation of surface holes. The formation of these holes changes the QD surface structure, which leads to fluorescence quenching of the QDs. Newly added Cd2+ can selectively recognize and combine with these holes; thus, the fluorescence intensity of the QDs can be restored. The linear response of this turn-on fluorescent sensor was found to be 0-100 µg/L and 100-600 µg/L under the determined optimal conditions, and its limit of detection (LOD) for Cd2+ was 2.642 µg/L (23.5 nmol/L).

9.
Sensors (Basel) ; 20(8)2020 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-32316351

RESUMO

In this paper, an all-solid-state nitrate doped polypyrrole (PPy(NO3-) ion-selective electrode (ISE) was prepared with a nanohybrid composite film of gold nanoparticles (AuNPs) and electrochemically reduced graphene oxide (ERGO). Preliminary tests on the ISE based in-situ soil nitrate-nitrogen (NO3--N) monitoring was conducted in a laboratory 3-stage column. Comparisons were made between the NO3--N content of in-situ soil percolate solution and laboratory-prepared extract solution. Possible influential factors of sample depth, NO3--N content, soil texture, and moisture were varied. Field-emission scanning electron microscopy (FESEM) and X-ray powder diffraction (XRD) characterized morphology and content information of the composite film of ERGO/AuNPs. Due to the performance excellence for conductivity, stability, and hydrophobicity, the ISE with ERGO/AuNPs illustrates an acceptable detection range from 10-1 to 10-5 M. The response time was determined to be about 10 s. The lifetime was 65 days, which revealed great potential for the implementation of the ERGO/AuNPs mediated ISE for in-situ NO3--N monitoring. In-situ NO3--N testing results conducted by the all-solid-state ISE followed a similar trend with the standard UV-VIS method.

10.
AAPS PharmSciTech ; 21(3): 107, 2020 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-32185564

RESUMO

Amorphous solid dispersions (ASD) are one of the most important supersaturating drug delivery systems (SDDS) for poorly water-soluble drugs to improve their bioavailability. As a result of thermodynamic instability, drug molecules tend to precipitate during storage and dissolution in gastrointestinal tract. Various precipitation inhibitors (PI) have been widely used to improve the stability in the past decade. However, most studies have investigated the inhibiting capability of PI on drug precipitation, rarely considering their potential hindering effect on the drug dissolution. The present study designed an ASD of Indomethacin (IND) and Eudragit® EPO by hot melt extrusion to investigate the influence of the added PI (PVP-K30) into ASD both on dissolution and precipitation. The precipitation study by solvent shift method indicated PVP-K30 could inhibit the precipitation of IND significantly. The dissolution study in different concentrations of PVP-K30 showed when the concentration increased above 50 µg/mL, PVP-K30 displayed an acceptable precipitation inhibition without drug concentration decline but an unexpected dissolution impediment with the reduction of maximum concentration platform. The dissolution tests of physical mixtures (PMs) of ASD and PVP-K30 also showed the precipitation inhibition and dissolution impediment when more than 2% PVP-K30 in PMs. This opposed effect of PVP-K30 was strengthen in ternary systems prepared by hot melt extruding the mixtures of IND, Eudragit® EPO and PVP-K30. All of these results proved the PI may be a double-edged sword for the opposed effects of precipitation inhibition and dissolution impediment, which should be carefully considered in the design and development of SDDS.


Assuntos
Sistemas de Liberação de Medicamentos , Indometacina/química , Povidona/química , Ácidos Polimetacrílicos , Solubilidade
11.
Sensors (Basel) ; 19(21)2019 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-31661786

RESUMO

Soil nitrate-nitrogen (NO3--N) is one of the primary factors used to control nitrogen topdressing application during the crop growth period. The ion-selective electrode (ISE) is a promising method for rapid lower-cost in-field detection. Due to the simplification of sample preparation, the accuracy and stability of ISE-based in-field detection is doubted. In this paper, a self-designed prototype system for on-site soil NO3--N detection was developed. The procedure of spinning centrifugation was used to avoid interference from soil slurry suspension. A modified Nernstian prediction model was quantitatively characterized with outputs from both the ISE and the soil moisture sensor. The measurement accuracy of the sensor fusion model was comparable with the laboratory ISE detections with standard sample pretreatment. Compared with the standard spectrometric method, the average absolute error (AE) and root-mean-square error (RMSE) were found to be less than 4.7 and 6.1 mg/L, respectively. The on-site soil testing efficiency was 4-5 min/sample, which reduced the operation time by 60% compared with manual sample preparation. The on-site soil NO3--N status was dynamically monitored for 42 consecutive days. The declining peak of NO3--N was observed. In all, the designed ISE-based detection system demonstrated a promising capability for the dynamic on-site monitoring of soil macronutrients.

12.
Int J Mol Sci ; 20(6)2019 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-30917487

RESUMO

Protein Kinase C (PKC) is a family composed of phospholipid-dependent serine/threonine kinases that are master regulators of inflammatory signaling. The activity of different PKCs is context-sensitive and these kinases can be positive or negative regulators of signaling pathways. The delta isoform (PKCδ) is a critical regulator of the inflammatory response in cancer, diabetes, ischemic heart disease, and neurodegenerative diseases. Recent studies implicate PKCδ as an important regulator of the inflammatory response in sepsis. PKCδ, unlike other members of the PKC family, is unique in its regulation by tyrosine phosphorylation, activation mechanisms, and multiple subcellular targets. Inhibition of PKCδ may offer a unique therapeutic approach in sepsis by targeting neutrophil-endothelial cell interactions. In this review, we will describe the overall structure and function of PKCs, with a focus on the specific phosphorylation sites of PKCδ that determine its critical role in cell signaling in inflammatory diseases such as sepsis. Current genetic and pharmacological tools, as well as in vivo models, that are used to examine the role of PKCδ in inflammation and sepsis are presented and the current state of emerging tools such as microfluidic assays in these studies is described.


Assuntos
Proteína Quinase C-delta/metabolismo , Sepse/metabolismo , Transdução de Sinais , Regulação Alostérica , Animais , Humanos , Neutrófilos/metabolismo , Fosforilação , Proteína Quinase C-delta/química
13.
J Neuroinflammation ; 15(1): 309, 2018 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-30400800

RESUMO

BACKGROUND: Neuroinflammation often develops in sepsis leading to activation of cerebral endothelium, increased permeability of the blood-brain barrier (BBB), and neutrophil infiltration. We have identified protein kinase C-delta (PKCδ) as a critical regulator of the inflammatory response and demonstrated that pharmacologic inhibition of PKCδ by a peptide inhibitor (PKCδ-i) protected endothelial cells, decreased sepsis-mediated neutrophil influx into the lung, and prevented tissue damage. The objective of this study was to elucidate the regulation and relative contribution of PKCδ in the control of individual steps in neuroinflammation during sepsis. METHODS: The role of PKCδ in mediating human brain microvascular endothelial (HBMVEC) permeability, junctional protein expression, and leukocyte adhesion and migration was investigated in vitro using our novel BBB on-a-chip (B3C) microfluidic assay and in vivo in a rat model of sepsis induced by cecal ligation and puncture (CLP). HBMVEC were cultured under flow in the vascular channels of B3C. Confocal imaging and staining were used to confirm tight junction and lumen formation. Confluent HBMVEC were pretreated with TNF-α (10 U/ml) for 4 h in the absence or presence of PKCδ-i (5 µM) to quantify neutrophil adhesion and migration in the B3C. Permeability was measured using a 40-kDa fluorescent dextran in vitro and Evans blue dye in vivo. RESULTS: During sepsis, PKCδ is activated in the rat brain resulting in membrane translocation, a step that is attenuated by treatment with PKCδ-i. Similarly, TNF-α-mediated activation of PKCδ and its translocation in HBMVEC are attenuated by PKCδ-i in vitro. PKCδ inhibition significantly reduced TNF-α-mediated hyperpermeability and TEER decrease in vitro in activated HBMVEC and rat brain in vivo 24 h after CLP induced sepsis. TNF-α-treated HBMVEC showed interrupted tight junction expression, whereas continuous expression of tight junction protein was observed in non-treated or PKCδ-i-treated cells. PKCδ inhibition also reduced TNF-α-mediated neutrophil adhesion and migration across HBMVEC in B3C. Interestingly, while PKCδ inhibition decreased the number of adherent neutrophils to baseline (no-treatment group), it significantly reduced the number of migrated neutrophils below the baseline, suggesting a critical role of PKCδ in regulating neutrophil transmigration. CONCLUSIONS: The BBB on-a-chip (B3C) in vitro assay is suitable for the study of BBB function as well as screening of novel therapeutics in real-time. PKCδ activation is a key signaling event that alters the structural and functional integrity of BBB leading to vascular damage and inflammation-induced tissue damage. PKCδ-TAT peptide inhibitor has therapeutic potential for the prevention or reduction of cerebrovascular injury in sepsis-induced vascular damage.


Assuntos
Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/fisiopatologia , Proteína Quinase C-delta/metabolismo , Sepse/patologia , Animais , Barreira Hematoencefálica/efeitos dos fármacos , Permeabilidade Capilar/efeitos dos fármacos , Permeabilidade Capilar/fisiologia , Adesão Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Células Cultivadas , Modelos Animais de Doenças , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/fisiologia , Humanos , Masculino , Infiltração de Neutrófilos/efeitos dos fármacos , Infiltração de Neutrófilos/fisiologia , Peptídeos/farmacologia , Fosforilação/efeitos dos fármacos , Proteína Quinase C-delta/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Transporte Proteico/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Proteína da Zônula de Oclusão-1/metabolismo
14.
J Nanobiotechnology ; 16(1): 57, 2018 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-30012166

RESUMO

BACKGROUND: Matrix-metalloproteinases, which are overexpressed in many types of cancer, can be applied to improve the bioavailability of chemotherapeutic drugs and guide therapeutic targeting. Thus, we aimed to develop enzyme-responsive nanoparticles based on a functionalized copolymer (mPEG-Peptide-PCL), which was sensitive to matrix metalloproteinase, as smart drug vesicles for enhanced biological specificity and reduced side effects. RESULTS: The rate of in vitro curcumin (Cur) release from Cur-P-NPs was not markedly accelerated in weakly acidic tumor microenvironment, indicating a stable intracellular concentration and a consistent therapeutic effect. Meanwhile, P-NPs and Cur-P-NPs displayed prominent biocompatibility, biostability, and inhibition efficiency in tumor cells. In addition, Cur-P-NPs showed higher fluorescence intensity than Cur-NPs in tumor cells, implying enhanced cell permeability and targeting ability. Moreover, the internalization and intracellular transport of Cur-P-NPs were mainly via macropinocytosis. Studies of pharmacodynamics and cellular uptake in vitro and biodistribution in vivo demonstrated that Cur-P-NPs had stronger target efficiency and therapeutic effect than Cur-DMSO and Cur-NPs in tumor tissue. CONCLUSION: Results indicate that Cur-P-NPs can be employed for active targeted drug delivery in cancer treatment and other biomedical applications.


Assuntos
Antineoplásicos/química , Neoplasias Pulmonares/tratamento farmacológico , Metaloproteinases da Matriz/metabolismo , Nanopartículas/química , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Disponibilidade Biológica , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Peptídeos Penetradores de Células/química , Curcumina/química , Curcumina/farmacologia , Curcumina/uso terapêutico , Portadores de Fármacos , Liberação Controlada de Fármacos , Humanos , Neoplasias Pulmonares/metabolismo , Camundongos Nus , Terapia de Alvo Molecular , Nanopartículas/uso terapêutico , Tamanho da Partícula , Poliésteres/química , Polietilenoglicóis/química
15.
Org Biomol Chem ; 12(2): 330-44, 2014 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-24258093

RESUMO

The evolution of the synthetic strategy resulting in a total synthesis of vinigrol is presented. Oxidative dearomatization/intramolecular Diels-Alder cycloaddition has served as the successful cornerstone for all of the approaches. Extensive radical cyclization efforts to form the tetracyclic core resulted in interesting and surprising reaction outcomes, none of which could be advanced to vinigrol. These cyclization obstacles were successfully overcome by using Heck instead of radical cyclizations. The total synthesis features a trifluoroethyl ether protecting group being used for the first time in organic synthesis. The logic of its selection and the group's importance beyond protecting the C8a hydroxyl group is presented along with a discussion of strategies for its removal. Because of the compact tetracyclic cage the route is built around many unusual reaction observations and solutions have emerged. For example, a first of its kind Grob fragmentation reaction featuring a trifluoroethyl leaving group has been uncovered, interesting interrupted selenium dioxide allylic oxidations have been observed as well as intriguing catalyst and counterion dependent directed hydrogenations.


Assuntos
Diterpenos/síntese química , Diterpenos/química , Estrutura Molecular , Oxirredução
16.
Acta Biomater ; 179: 207-219, 2024 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-38513724

RESUMO

Despite the booming progress of anticancer nanomedicines in the past two decades, precise tumor-targetability and sufficient tumor-accumulation are less successful and still require further research. To tackle this challenge, herein we present a biomolecular motor (FOF1-ATPase)-embedded chromatophore as nanorobot to efficiently overcome biological barriers, and thoroughly investigate its chemotactic motility, tumor-accumulation ability and endocytosis. Chromatophores embedded with FOF1-ATPase motors were firstly extracted from Thermus thermophilus, then their properties were fully characterized. Specifically, two microfluidic platforms (laminar flow microchip and tumor microenvironment (TME) microchip) were designed and developed to fully investigate the motility, tumor-accumulation ability and endocytosis of the chromatophore nanorobot (CN). The results from the laminar flow microchip indicated that the obtained CN possessed the strongly positive chemotaxis towards protons. And the TME microchip experiments verified that the CN had a desirable tumor-accumulation ability. Cellular uptake experiments demonstrated that the CN efficiently promoted the endocytosis of the fluorescence DiO into the HT-29 cells. And the in vivo studies revealed that the intravenously administered CN exhibited vigorous tumor-targetability and accumulation ability as well as highly efficient antitumor efficacy. All the results suggested that FOF1-ATPase motors-embedded CN could be promising nanomachines with powerful self-propulsion for overcoming physiological barriers and tumor-targeted drug delivery. STATEMENT OF SIGNIFICANCE: In this study, we demonstrated that FOF1-ATPase-embedded chromatophore nanorobots exhibit a strong proton chemotaxis, which not only plays a key role in tumor-targetability and accumulation, but also promotes tumor tissue penetration and internalization. The results of in vitro and in vivo studies indicated that drug-loaded chromatophore nanorobots are capable to simultaneously accomplish tumor-targeting, accumulation, penetration and internalization for enhanced tumor therapy. Our study provides a fundamental basis for further study on FOF1-ATPase-embedded chromatophore as tumor-targeting drug delivery systems that have promising clinical applications. It offers a new and more efficient delivery vehicle for cancer related therapeutics.


Assuntos
Endocitose , Humanos , Animais , Endocitose/efeitos dos fármacos , Células HT29 , Camundongos , ATPases Translocadoras de Prótons/metabolismo , Microambiente Tumoral/efeitos dos fármacos , Camundongos Nus , Robótica , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Camundongos Endogâmicos BALB C , Sistemas de Liberação de Medicamentos , Concentração de Íons de Hidrogênio
17.
Pharmaceutics ; 16(6)2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38931841

RESUMO

Gastric acid secretion is closely associated with the development and treatment of chronic gastritis, gastric ulcers, and reflux esophagitis. However, gastric acid secretion is affected by complex physiological and pathological factors, and real-time detection and control are complicated and expensive. A gastric delivery system for antacids and therapeutics in response to low pH in the stomach holds promise for smart and personalized treatment of stomach diseases. In this study, pH-responsive modular units were used to assemble various modular devices for self-regulation of pH and drug delivery to the stomach. The modular unit with a release window of 50 mm2 could respond to pH and self-regulate within 10 min, which is related to its downward floatation and internal gas production. The assembled devices could stably float downward in the medium and detach sequentially at specific times. The assembled devices loaded with antacids exhibited smart pH self-regulation under complex physiological and pathological conditions. In addition, the assembled devices loaded with antacids and acid suppressors could multi-pulse or prolong drug release after rapid neutralization of gastric acid. Compared with traditional coating technology, 3D printing can print the shell layer by layer, flexibly adjust the internal and external structure and composition, and assemble it into a multi-level drug release system. Compared with traditional coating, 3D-printed shells have the advantage of the flexible adjustment of internal and external structure and composition, and are easy to assemble into a complex drug delivery system. This provides a universal and flexible strategy for the personalized treatment of diseases with abnormal gastric acid secretion, especially for delivering acid-unstable drugs.

18.
Drug Deliv Transl Res ; 14(2): 312-328, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37620647

RESUMO

Oral administration is the most commonly used form of treatment due to its advantages, including high patient compliance, convenient administration, and minimal preparation required. However, the traditional preparation process of oral solid preparation has many defects. Although continuous manufacturing line that combined all the unit operations has been developed and preliminarily applied in the pharmaceutical industry, most of the currently used manufacturing processes are still complicated and discontinuous. As a result, these complex production steps will lead to low production efficiency and high quality control risk of the final product. Additionally, the large-scale production mode is inappropriate for the personalized medicines, which commonly is customized with small amount. Several attractive techniques, such as hot-melt extrusion, fluidized bed pelletizing and spray drying, could effectively shorten the process flow, but still, they have inherent limitations that are challenging to address. As a novel manufacturing technique, 3D printing could greatly reduce or eliminate these disadvantages mentioned above, and could realize a desirable continuous production for small-scale personalized manufacturing. In recent years, due to the participation of 3D printing, the development of printed drugs has progressed by leaps and bounds, especially in the design of oral drug dosage forms. This review attempts to summarize the new development of 3D printing technology in oral preparation and also discusses their advantages and disadvantages as well as potential applications.


Assuntos
Indústria Farmacêutica , Tecnologia Farmacêutica , Humanos , Tecnologia Farmacêutica/métodos , Preparações Farmacêuticas , Administração Oral , Impressão Tridimensional
19.
Drug Deliv Transl Res ; 14(9): 2461-2473, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38296909

RESUMO

Artemisia argyi, commonly known as wormwood, is a traditional Chinese herbal food and medicine celebrated for its notable antibacterial and anti-inflammatory properties. This study explores a novel delivery method for wormwood, aiming for more convenient and versatile applications. Specifically, we present the first investigation into combining wormwood with microstructures to create a microneedle (MN) patch for wound healing. The wormwood microneedle (WMN) patch is formulated with milled wormwood sap, calcium carbonate, and sodium hyaluronate. The addition of 0.3% (w/v) sodium hyaluronate enhances the mechanical strength of the WMN patch. Pectin, derived from wormwood, is combined with calcium carbonate to create a gelatinous and solidified substance. The WMN patch exhibits a well-defined shape and sufficient mechanical strength to penetrate the epidermis, as confirmed by our results. In vitro experiments demonstrate the biocompatibility of the WMN patch with fibroblasts and highlight its antibacterial and anti-inflammatory properties. Furthermore, the patch facilitates collagen deposition at the wound site. In an excisional rat model, the WMN patch significantly accelerates the wound closure rate compared to the control group. Our findings suggest that the WMN patch has the potential to serve as a natural treatment for wound healing. Additionally, this approach can be extended to other biologically active substances with similar physiochemical characteristics in future applications.


Assuntos
Artemisia , Agulhas , Ratos Sprague-Dawley , Cicatrização , Cicatrização/efeitos dos fármacos , Animais , Artemisia/química , Masculino , Antibacterianos/administração & dosagem , Antibacterianos/química , Ácido Hialurônico/química , Ácido Hialurônico/administração & dosagem , Ratos , Anti-Inflamatórios/administração & dosagem , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Fibroblastos/efeitos dos fármacos , Pectinas/química , Pectinas/administração & dosagem , Camundongos , Humanos
20.
ACS Appl Mater Interfaces ; 16(10): 12202-12216, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38416874

RESUMO

As for wound drug delivery, microneedles (MNs) have attracted wide attention. However, while effective at increasing the depth of drug delivery, traditional MNs often have limited drug loads and have difficulty penetrating scabs on wounds. Herein, we develop a drug delivery system combining MgO@polydopamine (MgO@PDA) nanoparticle-loaded photothermal MN patches and chitosan (CS) gel to inhibit the formation of scabs and deliver sufficient drugs into deep tissue. When inserted into the wound, the MN system can keep the wound bed moist and weakly acidic to inhibit the formation of scabs and accelerate wound closure. The released MgO@PDA nanoparticles from both the tips and the backing layer, which immensely increase the drug load, continuously release Mg2+ in the moist, weakly acidic wound bed, promoting tissue migration and the formation of microvessels. MgO@PDA nanoparticles show excellent antibacterial activity under near-infrared irradiation synergized with the CS gel, and the PDA coating can also overcome the adverse effects of oxidative stress. Through in vitro and in vivo experiments, the MN system showed remarkable antibacterial, antioxidant, anti-inflammatory, and pro-angiogenic effects, indicating its potential in the treatment of infectious wounds.


Assuntos
Quitosana , Indóis , Polímeros , Óxido de Magnésio , Sistemas de Liberação de Medicamentos , Bandagens , Antibacterianos/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA