Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Mol Cell ; 61(6): 809-20, 2016 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-26990986

RESUMO

Cereblon (CRBN), a substrate receptor for the cullin-RING ubiquitin ligase 4 (CRL4) complex, is a direct protein target for thalidomide teratogenicity and antitumor activity of immunomodulatory drugs (IMiDs). Here we report that glutamine synthetase (GS) is an endogenous substrate of CRL4(CRBN). Upon exposing cells to high glutamine concentration, GS is acetylated at lysines 11 and 14, yielding a degron that is necessary and sufficient for binding and ubiquitylation by CRL4(CRBN) and degradation by the proteasome. Binding of acetylated degron peptides to CRBN depends on an intact thalidomide-binding pocket but is not competitive with IMiDs. These findings reveal a feedback loop involving CRL4(CRBN) that adjusts GS protein levels in response to glutamine and uncover a new function for lysine acetylation.


Assuntos
Glutamato-Amônia Ligase/metabolismo , Fatores Imunológicos/metabolismo , Peptídeo Hidrolases/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Acetilação , Proteínas Adaptadoras de Transdução de Sinal , Glutamina/metabolismo , Células HEK293 , Humanos , Lisina/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteólise , Talidomida/metabolismo , Ubiquitinação
2.
Eur Heart J ; 43(20): 1973-1989, 2022 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-35190817

RESUMO

AIMS: Cereblon (CRBN) is a substrate receptor of the E3 ubiquitin ligase complex that was reported to target ion channel proteins. L-type voltage-dependent Ca2+ channel (LTCC) density and dysfunction is a critical player in heart failure with reduced ejection fraction (HFrEF). However, the underlying cellular mechanisms by which CRBN regulates LTCC subtype Cav1.2α during cardiac dysfunction remain unclear. Here, we explored the role of CRBN in HFrEF by investigating the direct regulatory role of CRBN in Cav1.2α activity and examining how it can serve as a target to address myocardial dysfunction. METHODS AND RESULTS: Cardiac tissues from HFrEF patients exhibited increased levels of CRBN compared with controls. In vivo and ex vivo studies demonstrated that whole-body CRBN knockout (CRBN-/-) and cardiac-specific knockout mice (Crbnfl/fl/Myh6Cre+) exhibited enhanced cardiac contractility with increased LTCC current (ICaL) compared with their respective controls, which was modulated by the direct interaction of CRBN with Cav1.2α. Mechanistically, the Lon domain of CRBN directly interacted with the N-terminal of Cav1.2α. Increasing CRBN levels enhanced the ubiquitination and proteasomal degradation of Cav1.2α and decreased ICaL. In contrast, genetic or pharmacological depletion of CRBN via TD-165, a novel PROTAC-based CRBN degrader, increased surface expression of Cav1.2α and enhanced ICaL. Low CRBN levels protected the heart against cardiomyopathy in vivo. CONCLUSION: Cereblon selectively degrades Cav1.2α, which in turn facilitates cardiac dysfunction. A targeted approach or an efficient method of reducing CRBN levels could serve as a promising strategy for HFrEF therapeutics.


Assuntos
Insuficiência Cardíaca , Ubiquitina-Proteína Ligases , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Humanos , Camundongos , Volume Sistólico , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação
3.
J Neurosci ; 41(24): 5138-5156, 2021 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-33972400

RESUMO

Protein aggregation can induce explicit neurotoxic events that trigger a number of presently untreatable neurodegenerative disorders. Chaperones, on the other hand, play a neuroprotective role because of their ability to unfold and refold abnormal proteins. The progressive nature of neurotoxic events makes it important to discover endogenous factors that affect pathologic and molecular phenotypes of neurodegeneration in animal models. Here, we identified microtubule-associated protein tau, and chaperones Hsp70 (heat shock protein 70) and DNAJA1 (DJ2) as endogenous substrates of cereblon (CRBN), a substrate-recruiting subunit of cullin4-RING-E3-ligase. This recruitment results in ubiquitin-mediated degradation of tau, Hsp70, and DJ2. Knocking out CRBN enhances the chaperone activity of DJ2, resulting in decreased phosphorylation and aggregation of tau, improved association of tau with microtubules, and reduced accumulation of pathologic tau across brain. Functionally abundant DJ2 could prevent tau aggregation induced by various factors like okadaic acid and heparin. Depletion of CRBN also decreases the activity of tau-kinases including GSK3α/ß, ERK, and p38. Intriguingly, we found a high expression of CRBN and low levels of DJ2 in neuronal tissues of 5XFAD and APP knock-in male mouse models of Alzheimer's disease. This implies that CRBN-mediated DJ2/Hsp70 pathway may be compromised in neurodegeneration. Being one of the primary pathogenic events, elevated CRBN can be a contributing factor for tauopathies. Our data provide a functional link between CRBN and DJ2/Hsp70 chaperone machinery in abolishing the cytotoxicity of aggregation-prone tau and suggest that Crbn-/- mice serve as an animal model of resistance against tauopathies for further exploration of the molecular mechanisms of neurodegeneration.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas de Choque Térmico HSP40/metabolismo , Tauopatias/patologia , Ubiquitina-Proteína Ligases/metabolismo , Proteínas tau/metabolismo , Animais , Linhagem Celular , Modelos Animais de Doenças , Humanos , Masculino , Camundongos , Degeneração Neural , Tauopatias/metabolismo
4.
J Biol Chem ; 289(34): 23343-52, 2014 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-24993823

RESUMO

Initially identified as a protein implicated in human mental deficit, cereblon (CRBN) was recently recognized as a negative regulator of adenosine monophosphate-activated protein kinase (AMPK) in vivo and in vitro. Here, we present results showing that CRBN can effectively regulate new protein synthesis through the mammalian target of rapamycin (mTOR) signaling pathway, a downstream target of AMPK. Whereas deficiency of Crbn repressed protein translation via activation of the AMPK-mTOR cascade in Crbn-knock-out mice, ectopic expression of the wild-type CRBN increased protein synthesis by inhibiting endogenous AMPK. Unlike the wild-type CRBN, a mutant CRBN found in human patients, which lacks the last 24 amino acids, failed to rescue mTOR-dependent repression of protein synthesis in Crbn-deficient mouse fibroblasts. These results provide the first evidence that Crbn can activate the protein synthesis machinery through the mTOR signaling pathway by inhibiting AMPK. In light of the fact that protein synthesis regulated by mTOR is essential for various forms of synaptic plasticity that underlie the cognitive functions of the brain, the results of this study suggest a plausible mechanism for CRBN involvement in higher brain function in humans, and they may help explain how a specific mutation in CRBN can affect the cognitive ability of patients.


Assuntos
Adenilato Quinase/metabolismo , Mutação , Proteínas do Tecido Nervoso/genética , Biossíntese de Proteínas , Serina-Treonina Quinases TOR/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Animais , Encéfalo/enzimologia , Encéfalo/metabolismo , Deficiências da Aprendizagem/genética , Masculino , Transtornos da Memória/genética , Camundongos , Camundongos Knockout , Fosforilação
5.
Biochem Biophys Res Commun ; 458(1): 34-9, 2015 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-25619137

RESUMO

Previous studies showed that cereblon (CRBN) binds to various cellular target proteins, implying that CRBN regulates a wide range of cell responses. In this study, we found that deletion of the Crbn gene desensitized mouse embryonic fibroblast cells to various cell death-promoting stimuli, including endoplasmic reticulum stress inducers. Mechanistically, deletion of Crbn activates pathways involved in the unfolded protein response prior to ER stress induction. Loss of Crbn activated PKR-like ER kinase (PERK) with enhanced phosphorylation of eIF2α. Following ER stress induction, loss of Crbn delayed dephosphorylation of eIF2α, while reconstitution of Crbn reversed enhanced phosphorylation of PERK and eIF2α. Lastly, we found that activation of the PERK/eIF2α pathway following Crbn deletion is caused by activation of AMP-activated protein kinase (AMPK). We propose that CRBN plays a role in cellular stress signaling, including the unfolded protein response, by controlling the activity of AMPK.


Assuntos
Estresse do Retículo Endoplasmático/fisiologia , Proteínas do Tecido Nervoso/genética , Resposta a Proteínas não Dobradas/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Animais , Isquemia Encefálica/genética , Isquemia Encefálica/patologia , Morte Celular/genética , Células Cultivadas , Estresse do Retículo Endoplasmático/genética , Ativação Enzimática , Fibroblastos/citologia , Fibroblastos/fisiologia , Masculino , Proteínas de Membrana/metabolismo , Camundongos Knockout , Proteínas do Tecido Nervoso/metabolismo , Oxigênio/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , eIF-2 Quinase/metabolismo
6.
Pharmaceuticals (Basel) ; 14(6)2021 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-34073624

RESUMO

Cereblon (CRBN), a primary target of immune-modulatory imide drugs (IMiDs), functions as a substrate receptor in the CUL4-RBX1-DDB1-CRBN (known as CRL4CRBN) E3 ubiquitin ligase complex. Binding of IMiDs to CRBN redirects the CRL4CRBN E3 ubiquitin ligase to recruit or displace its substrates. Interaction between CRBN and the AMPK α subunit leads to CRL4CRBN-dependent degradation of the γ subunit and inhibits AMPK activity. However, the effect of thalidomide on the function of CRBN as a negative regulator of AMPK through interaction with the α subunit remains unclear. Here, we show that thalidomide does not affect AMPK activation or the binding affinity between CRBN and the AMPK α subunit. Thalidomide had no effect on AMPK activity independent of CRBN expression. The N-terminal region and C-terminal tail of CRBN, which is distinct from the IMiD binding site, were critical for interaction with the AMPK α subunit. The present results suggest that CRL4CRBN negatively regulates AMPK through a pathway independent from the CRBN-IMiD binding region.

7.
Biochim Biophys Acta Mol Cell Res ; 1867(8): 118729, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32333926

RESUMO

Cereblon (CRBN), a substrate receptor for Cullin-ring E3 ubiquitin ligase (CRL), is a major target protein of immunomodulatory drugs. An earlier study demonstrated that CRBN directly interacts with the catalytic α subunit of AMP-activated protein kinase (AMPK), a master regulator of energy homeostasis, down-regulating the enzymatic activity of AMPK. However, it is not clear how CRBN modulates AMPK activity. To investigate the mechanism of CRBN-dependent AMPK inhibition, we measured protein levels of each AMPK subunit in brains, livers, lungs, hearts, spleens, skeletal muscles, testes, kidneys, and embryonic fibroblasts from wild-type and Crbn-/- mice. Protein levels and stability of the regulatory AMPKγ subunit were increased in Crbn-/- mice. Increased stability of AMPKγ in Crbn-/- MEFs was dramatically reduced by exogenous expression of Crbn. In wild-type MEFs, the proteasomal inhibitor MG132 blocked degradation of AMPKγ. We also found that CRL4CRBN directly ubiquitinated AMPKγ. Taken together, these findings suggest that CRL4CRBN regulates AMPK through ubiquitin-dependent proteasomal degradation of AMPKγ.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Ubiquitina/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Encéfalo/metabolismo , Regulação para Baixo , Fibroblastos/metabolismo , Células HEK293 , Coração , Homeostase , Humanos , Rim/metabolismo , Fígado/metabolismo , Pulmão/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Músculo Esquelético/metabolismo , Baço/metabolismo , Testículo/metabolismo , Complexos Ubiquitina-Proteína Ligase/metabolismo , Ubiquitina-Proteína Ligases , Ubiquitinação
8.
Nat Commun ; 11(1): 5489, 2020 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-33127885

RESUMO

Calcium flux regulating intracellular calcium levels is essential and modulated for efficient efferocytosis. However, the molecular mechanism by which calcium flux is modulated during efferocytosis remains elusive. Here, we report that Orai1, a Crbn substrate, is upregulated via its attenuated interaction with Crbn during efferocytosis, which increases calcium influx into phagocytes and thereby promotes efferocytosis. We found that Crbn deficiency promoted phagocytosis of apoptotic cells, which resulted from facilitated phagocytic cup closure and was nullified by a CRAC channel inhibitor. In addition, Orai1 associated with Crbn, resulting in ubiquitination and proteasomal degradation of Orai1 and alteration of SOCE-mediated calcium influx. The association of Orai1 with Crbn was attenuated during efferocytosis, leading to reduced ubiquitination of Orai1 and consequently upregulation of Orai1 and calcium influx. Collectively, our study reveals a regulatory mechanism by which calcium influx is modulated by a Crbn-Orai1 axis to facilitate efferocytosis.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Cálcio/metabolismo , Proteína ORAI1/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Apoptose , Canais de Cálcio/metabolismo , Sinalização do Cálcio , Morte Celular , Células HEK293 , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fagocitose , Ubiquitina-Proteína Ligases/genética
9.
Diabetes ; 62(6): 1855-64, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23349485

RESUMO

A nonsense mutation in cereblon (CRBN) causes a mild type of mental retardation in humans. An earlier study showed that CRBN negatively regulates the functional activity of AMP-activated protein kinase (AMPK) in vitro by binding directly to the α1-subunit of the AMPK complex. However, the in vivo role of CRBN was not studied. For elucidation of the physiological functions of Crbn, a mouse strain was generated in which the Crbn gene was deleted throughout the whole body. In Crbn-deficient mice fed a normal diet, AMPK in the liver showed hyperphosphorylation, which indicated the constitutive activation of AMPK. Since Crbn-deficient mice showed significantly less weight gain when fed a high-fat diet and their insulin sensitivity was considerably improved, the functions of Crbn in the liver were primarily investigated. These results provide the first in vivo evidence that Crbn is a negative modulator of AMPK, which suggests that Crbn may be a potential target for metabolic disorders of the liver.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Dieta Hiperlipídica/efeitos adversos , Fígado/enzimologia , Peptídeo Hidrolases/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Animais , Feminino , Resistência à Insulina/genética , Resistência à Insulina/fisiologia , Masculino , Camundongos , Camundongos Knockout , Obesidade/etiologia , Obesidade/genética , Obesidade/terapia , Peptídeo Hidrolases/genética , Ubiquitina-Proteína Ligases
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA