Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Revista
Assunto da revista
Intervalo de ano de publicação
1.
Small ; 11(11): 1293-300, 2015 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-25521110

RESUMO

Graphene/silver nanowire (AgNWs) stacked electrodes, i.e., graphene/AgNWs, are fabricated on a glass substrate by air-spray coating of AgNWs followed by subsequent encapsulation via a wet transfer of single-layer graphene (SLG) and multilayer graphene (MLG, reference specimen) sheets. Here, graphene is introduced to improve the optical sintering efficiency of a xenon flash lamp by controlling optical transparency and light absorbing yield in stacked graphene/AgNW electrodes, facilitating the fusion at contacts of AgNWs. Intense pulsed light (IPL) sintering induced ultrafast (<20 ms) welding of AgNW junctions encapsulated by graphene, resulting in approximately a four-fold reduction in the sheet resistance of IPL-treated graphene/AgNWs compared to that of IPL-treated AgNWs. The role of graphene in IPL-treated graphene/AgNWs is further investigated as a passivation layer against thermal oxidation and sulfurization. This work demonstrates that optical sintering is an efficient way to provide fast welding of Ag wire-to-wire junctions in stacked electrodes of graphene/AgNWs, leading to enhanced conductivity as well as superior long-term stability under oxygen and sulfur atmospheres.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA