Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Plant J ; 118(6): 1864-1871, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38470090

RESUMO

The production of compact vectors for gene stacking is hindered by a lack of effective linkers. Here, we report that a 26-nt nucleic acid linker, NAL1, from the fungus Glarea lozoyensis and its truncated derivatives could connect two genes as a bicistron, enabling independent translation in a maize protoplast transient expression system and human 293 T cells. The optimized 9-nt NAL10 linker was then used to connect four genes driven by a bidirectional promoter; this combination was successfully used to reconstruct the astaxanthin biosynthesis pathway in transgenic maize. The short and efficient nucleic acid linker NAL10 can be widely used in multi-gene expression and synthetic biology in animals and plants.


Assuntos
Plantas Geneticamente Modificadas , Biologia Sintética , Zea mays , Biologia Sintética/métodos , Zea mays/genética , Zea mays/metabolismo , Humanos , Plantas Geneticamente Modificadas/genética , Regiões Promotoras Genéticas/genética , Células HEK293 , Xantofilas/metabolismo , Hypocreales/genética , Hypocreales/metabolismo , Animais , Ácidos Nucleicos/genética , Expressão Gênica , Vetores Genéticos/genética , Protoplastos/metabolismo
2.
BMC Plant Biol ; 24(1): 3, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38163880

RESUMO

BACKGROUND: Yellow Stripe-Like (YSL) proteins are involved in the uptake and transport of metal ions. They play important roles in maintaining the zinc and iron homeostasis in Arabidopsis, rice (Oryza sativa), and barley (Hordeum vulgare). However, proteins in this family have not been fully identified and comprehensively analyzed in maize (Zea mays L.). RESULTS: In this study, we identified 19 ZmYSLs in the maize genome and analyzed their structural features. The results of a phylogenetic analysis showed that ZmYSLs are homologous to YSLs of Arabidopsis and rice, and these proteins are divided into four independent branches. Although their exons and introns have structural differences, the motif structure is relatively conserved. Analysis of the cis-regulatory elements in the promoters indicated that ZmYSLs might play a role in response to hypoxia and light. The results of RNA sequencing and quantitative real-time PCR analysis revealed that ZmYSLs are expressed in various tissues and respond differently to zinc and iron deficiency. The subcellular localization of ZmYSLs in the protoplast of maize mesophyll cells showed that they may function in the membrane system. CONCLUSIONS: This study provided important information for the further functional analysis of ZmYSL, especially in the spatio-temporal expression and adaptation to nutrient deficiency stress. Our findings provided important genes resources for the maize biofortification.


Assuntos
Arabidopsis , Ferro , Ferro/metabolismo , Zinco/metabolismo , Zea mays/metabolismo , Arabidopsis/metabolismo , Filogenia , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas
3.
Cell Commun Signal ; 22(1): 195, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38539203

RESUMO

BACKGROUND: Lung cancer is cancer with the highest morbidity and mortality in the world and poses a serious threat to human health. Therefore, discovering new treatments is urgently needed to improve lung cancer prognosis. Small molecule inhibitors targeting the ubiquitin-proteasome system have achieved great success, in which deubiquitinase inhibitors have broad clinical applications. The deubiquitylase OTUD3 was reported to promote lung tumorigenesis by stabilizing oncoprotein GRP78, implying that inhibition of OTUD3 may be a therapeutic strategy for lung cancer. RESULTS: In this study, we identified a small molecule inhibitor of OTUD3, Rolapitant, by computer-aided virtual screening and biological experimental verification from FDA-approved drugs library. Rolapitant inhibited the proliferation of lung cancer cells by inhibiting deubiquitinating activity of OTUD3. Quantitative proteomic profiling indicated that Rolapitant significantly upregulated the expression of death receptor 5 (DR5). Rolapitant also promoted lung cancer cell apoptosis through upregulating cell surface expression of DR5 and enhanced TRAIL-induced apoptosis. Mechanistically, Rolapitant directly targeted the OTUD3-GRP78 axis to trigger endoplasmic reticulum (ER) stress-C/EBP homologous protein (CHOP)-DR5 signaling, sensitizing lung cancer cells to TRAIL-induced apoptosis. In the vivo assays, Rolapitant suppressed the growth of lung cancer xenografts in immunocompromised mice at suitable dosages without apparent toxicity. CONCLUSION: In summary, the present study identifies Rolapitant as a novel inhibitor of deubiquitinase OTUD3 and establishes that the OTUD3-GRP78 axis is a potential therapeutic target for lung cancer.


Assuntos
Chaperona BiP do Retículo Endoplasmático , Neoplasias Pulmonares , Compostos de Espiro , Humanos , Camundongos , Animais , Linhagem Celular Tumoral , Neoplasias Pulmonares/tratamento farmacológico , Proteômica , Proteases Específicas de Ubiquitina/metabolismo , Apoptose , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Ligante Indutor de Apoptose Relacionado a TNF/farmacologia
4.
J Dairy Sci ; 107(5): 2850-2863, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-37977444

RESUMO

The purpose of this study was to investigate the effects of early castration and eucalyptus oil (EUC) supplementation on dry matter intake (DMI), growth performance, and immune response of Holstein calves. Fifty-six male Holstein calves 52 d old and with an initial body weight (BW) of 63.5 ± 5.27 kg were used. The animals were blocked by BW and randomly assigned into 1 of the 4 treatment groups in a randomized complete block design with a 2 (no castration vs. castration) × 2 (without vs. with EUC) factorial arrangement of treatments. The treatments were (1) uncastrated calves fed without EUC, (2) uncastrated calves fed 0.5 g/d EUC (EUC group), (3) castrated calves (steers) fed without EUC (castrated group), and (4) steers fed with 0.5 g/d EUC (castrated + EUC). The experiment was 8 wk long, including pre- and postweaning (weaned at 72 d). The EUC × castrated interactions were not significant for DMI, growth performance, nutrient digestibility, and immune response. Castration did not affect the DMI, final BW, average daily gain (ADG), or feed efficiency, except that the ADG was greater for bull calves than for steers at postweaning. Supplementation with EUC increased DMI pre- and postweaning and increased the ADG of weaned calves. Digestibility in the total digestive tract was not affected by castration (except for organic matter digestibility), whereas adding EUC improved the digestibility of dry matter, acid detergent fiber, and crude protein. Blood concentration of IL-6 at d 94 was decreased by feeding EUC. These results indicate that the EUC could be fed to either intact or castrated dairy calves to promote growth and health postweaning; castration before weaning may reduce ADG and cause inflammatory stress without affecting feed intake or feed efficiency.

5.
Plant J ; 111(5): 1296-1307, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35793378

RESUMO

Because of their high efficiency during chromosome doubling, immature haploid maize (Zea mays L.) embryos are useful for doubled haploid production. The R1-nj marker is commonly used in doubled haploid breeding and has improved the efficiency of haploid identification. However, its effectiveness is limited by genetic background and environmental factors. We addressed this technical challenge by developing an efficient and accurate haploid embryo identification marker through co-expression of two transcription factor genes (ZmC1 and ZmR2) driven by the embryo-aleurone-specific bidirectional promoter PZmBD1 ; these factors can activate anthocyanin biosynthesis in the embryo and aleurone layer during early seed development. We developed a new haploid inducer, Maize Anthocyanin Gene InduCer 1 (MAGIC1), by introducing the transgenes into the haploid inducer line CAU6. MAGIC1 could identify haploids at 12 days after pollination, which is nine days earlier than CAU6. Importantly, MAGIC1 increased haploid identification accuracy to 99.1%, compared with 88.3% for CAU6. In addition, MAGIC1 could effectively overcome the inhibition of anthocyanin synthesis in some germplasms. Furthermore, an upgraded anthocyanin marker was developed from ZmC1 and ZmR2 to generate MAGIC2, which could identify haploids from diploids due to differential anthocyanin accumulation in immature embryos, coleoptiles, sheaths, roots, leaves, and dry seeds. This haploid identification system is more efficient and accurate than the conventional R1-nj-based method, and it simplifies the haploid identification process. Therefore, this system provides technical support for large-scale doubled haploid line production.


Assuntos
Antocianinas , Zea mays , Antocianinas/genética , Haploidia , Melhoramento Vegetal , Fatores de Transcrição/genética , Zea mays/genética
6.
Plant Physiol ; 189(2): 611-627, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35218364

RESUMO

Mitochondrial function relies on the assembly of electron transport chain complexes, which requires coordination between proteins encoded by the mitochondrion and those of the nucleus. Here, we cloned a maize (Zea mays) cytochrome c maturation FN stabilizer1 (CNS1) and found it encodes a pentatricopeptide repeat (PPR) protein. Members of the PPR family are widely distributed in plants and are associated with RNA metabolism in organelles. P-type PPR proteins play essential roles in stabilizing the 3'-end of RNA in mitochondria; whether a similar process exists for stabilizing the 5'-terminus of mitochondrial RNA remains unclear. The kernels of cns1 exhibited arrested embryo and endosperm development, whereas neither conventional splicing deficiency nor RNA editing difference in mitochondrial genes was observed. Instead, most of the ccmFN transcripts isolated from cns1 mutant plants were 5'-truncated and therefore lacked the start codon. Biochemical and molecular data demonstrated that CNS1 is a P-type PPR protein encoded by nuclear DNA and that it localizes to the mitochondrion. Also, one binding site of CNS1 located upstream of the start codon in the ccmFN transcript. Moreover, abnormal mitochondrial morphology and dramatic upregulation of alternative oxidase genes were observed in the mutant. Together, these results indicate that CNS1 is essential for reaching a suitable level of intact ccmFN transcripts through binding to the 5'-UTR of the RNAs and maintaining 5'-integrity, which is crucial for sustaining mitochondrial complex III function to ensure mitochondrial biogenesis and seed development in maize.


Assuntos
Complexo III da Cadeia de Transporte de Elétrons , Zea mays , Códon de Iniciação/metabolismo , Complexo III da Cadeia de Transporte de Elétrons/genética , Regulação da Expressão Gênica de Plantas , Mitocôndrias/genética , Mitocôndrias/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Splicing de RNA , Sementes/metabolismo , Zea mays/metabolismo
7.
Inorg Chem ; 62(41): 16913-16918, 2023 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-37797212

RESUMO

CdE (E = S, Se) quantum dots (QDs) with a broad and large Stokes shift PL emission have emerged as potential materials for white-light LEDs. However, this surface-related emission of nanocrystals is currently limited by low quantum efficiency. Herein, a convenient noninjected one-pot method at a relatively low temperature to prepare CdS QDs was readily achieved. The CdS-368 QD displays intense broad yellow emission in both solution and the solid state at room temperature. The coligation of organic and inorganic ligands passivates the electron trap states at the QD surface and suppresses nonradiative recombination, which is responsible for the high stability of colloids in organic solvents and the distinct fluorescence quantum yield.

8.
Plant Cell Physiol ; 63(4): 521-534, 2022 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-35137187

RESUMO

Iron (Fe) is an essential micronutrient for plant growth. Iron-regulated transporters (IRTs) play important roles in Fe2+ uptake and transport in strategy I plants. Maize (Zea mays) belongs to a strategy II plant, in which mugineic acid (MA)-Fe3+ uptake is mainly carried out by Yellow Stripe 1 (YS1). However, ZmIRT1 was previously identified by our laboratory. In this study, we isolated a novel gene from maize (ZmIRT2), which is highly homologous to OsIRT2 and ZmIRT1. ZmIRT2 was expressed in roots and anther and was induced by Fe and zinc (Zn) deficiencies. ZmIRT2-GFP fusion protein localized to the plasma membrane and endoplasmic reticulum. ZmIRT2 reversed growth defects involving Zn and Fe uptake in mutant yeast. ZmIRT2 overexpression in maize led to elevated Zn and Fe levels in roots, shoots and seeds of transgenic plants. Transcript levels of ZmIRT1 were elevated in roots, while levels of YS1 were reduced in shoots of ZmIRT2 transgenic plants. Our results imply that ZmIRT2 may function solely with ZmIRT1 to mediate Fe uptake in roots. ZmIRT1, ZmIRT2 and ZmYS1 may function in a cooperative manner to maintain Zn and Fe homeostasis in ZmIRT2 overexpressing plants. Furthermore, ZmIRT2 could be used in fortification efforts to elevate Zn and Fe levels in crop plants.


Assuntos
Ferro , Zea mays , Regulação da Expressão Gênica de Plantas , Ferro/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Zea mays/genética , Zea mays/metabolismo , Zinco/metabolismo
9.
Plant Biotechnol J ; 19(9): 1812-1823, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33780119

RESUMO

Production of the high-value carotenoid astaxanthin, which is widely used in food and feed due to its strong antioxidant activity and colour, is less efficient in cereals than in model plants. Here, we report a new strategy for expressing ß-carotene ketolase and hydroxylase genes from algae, yeasts and flowering plants in the whole seed using a seed-specific bidirectional promoter. Engineered maize events were backcrossed to inbred maize lines with yellow endosperm to generate progenies that accumulate astaxanthin from 47.76 to 111.82 mg/kg DW in seeds, and the maximum level is approximately sixfold higher than those in previous reports (16.2-16.8 mg/kg DW) in cereals. A feeding trial with laying hens indicated that they could take up astaxanthin from the maize and accumulate it in egg yolks (12.10-14.15 mg/kg) without affecting egg production and quality, as observed using astaxanthin from Haematococcus pluvialis. Storage stability evaluation analysis showed that the optimal conditions for long-term storage of astaxanthin-rich maize are at 4 °C in the dark. This study shows that co-expressing of functional genes driven by seed-specific bidirectional promoter could dramatically boost astaxanthin biosynthesis in every parts of kernel including embryo, aleurone layer and starch endosperm other than previous reports in the starch endosperm only. And the staple crop maize could serve as a cost-effective plant factory for reliably producing astaxanthin.


Assuntos
Engenharia Metabólica , Zea mays , Animais , Galinhas , Plantas Geneticamente Modificadas/genética , Xantofilas , Zea mays/genética
10.
J Integr Plant Biol ; 63(12): 2031-2037, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34850567

RESUMO

Although the genetic basis for endosperm development in maize (Zea mays) has been well studied, the mechanism for coordinating grain filling with increasing kernel size remains elusive. Here, we report that increased kernel size was selected during modern breeding and identify a novel DELLA-like transcriptional regulator, ZmGRAS11, which positively regulates kernel size and kernel weight in maize. We find that Opaque2, a core transcription factor for zein protein and starch accumulation, transactivates the expression of ZmGRAS11. Our data suggest that the Opaque2-ZmGRAS11 module mediates synergistic endosperm enlargement with grain filling.


Assuntos
Zea mays , Zeína , Endosperma/genética , Endosperma/metabolismo , Melhoramento Vegetal , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Zea mays/metabolismo , Zeína/genética , Zeína/metabolismo
11.
J Exp Bot ; 71(18): 5348-5364, 2020 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-32449922

RESUMO

Root meristem activity is the most critical process influencing root development. Although several factors that regulate meristem activity have been identified in rice, studies on the enhancement of meristem activity in roots are limited. We identified a T-DNA activation tagging line of a zinc-finger homeobox gene, OsZHD2, which has longer seminal and lateral roots due to increased meristem activity. The phenotypes were confirmed in transgenic plants overexpressing OsZHD2. In addition, the overexpressing plants showed enhanced grain yield under low nutrient and paddy field conditions. OsZHD2 was preferentially expressed in the shoot apical meristem and root tips. Transcriptome analyses and quantitative real-time PCR experiments on roots from the activation tagging line and the wild type showed that genes for ethylene biosynthesis were up-regulated in the activation line. Ethylene levels were higher in the activation lines compared with the wild type. ChIP assay results suggested that OsZHD2 induces ethylene biosynthesis by controlling ACS5 directly. Treatment with ACC (1-aminocyclopropane-1-carboxylic acid), an ethylene precursor, induced the expression of the DR5 reporter at the root tip and stele, whereas treatment with an ethylene biosynthesis inhibitor, AVG (aminoethoxyvinylglycine), decreased that expression in both the wild type and the OsZHD2 overexpression line. These observations suggest that OsZHD2 enhances root meristem activity by influencing ethylene biosynthesis and, in turn, auxin.


Assuntos
Meristema , Oryza , Etilenos , Regulação da Expressão Gênica de Plantas , Genes Homeobox , Ácidos Indolacéticos , Meristema/genética , Oryza/genética , Raízes de Plantas/genética , Fatores de Transcrição/genética
12.
J Dairy Sci ; 103(5): 4340-4354, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32197848

RESUMO

Physically effective neutral detergent fiber (peNDF) content of dairy cow diets was modified by varying the theoretical chop length of alfalfa silage and forage:concentrate (F:C) ratio, and effects on nutrient intakes, ruminal fermentation, site and extent of digestion, microbial protein synthesis, and milk production were evaluated. Estimates of dietary peNDF contents were compared with recommendations, and predictions of ruminal pH from peNDF and the recently developed physically adjusted neutral detergent fiber (paNDF) system were compared with observed pH. The experiment was designed as a triple 4 × 4 Latin square using 12 mid-lactating dairy cows with 4 intact, 4 ruminally cannulated, and 4 ruminally and duodenally cannulated cows. Site and extent of digestion and microbial protein synthesis were measured in a single 4 × 4 Latin square. Treatments were a 2 × 2 factorial arrangement; 2 forage particle lengths (FPL) of alfalfa silage (short and long) were combined with low (35:65) and high (60:40) F:C ratios [dry matter (DM) basis]. The peNDF contents were determined by multiplying the proportion (DM basis) of total mixed ration retained on 2 (8 and 19 mm; peNDF8.0) or 3 (1.18, 8, and 19 mm; peNDF1.18) sieves of the Penn State Particle Separator by the neutral detergent fiber content of the diet. The dietary peNDF contents ranged from 10.7 to 17.5% for peNDF8.0 or from 23.1 to 28.2% for peNDF1.18. Interactions between F:C ratio and FPL content were few. Increasing peNDF content of diets by increasing F:C ratio decreased DM intake, milk yield, and milk protein yield, whereas apparent total-tract DM digestibility and milk efficiency improved. Increasing F:C ratio improved ruminal pH status but decreased total volatile fatty acid concentration and microbial protein synthesis. Increasing peNDF content of diets via dietary FPL increased mean ruminal pH, but did not affect DM intake, total-tract digestibility, or milk production. The results indicate that feeding dairy cows a low F:C diet helps increase DM intake, milk production, and microbial protein synthesis, but may adversely affect feed digestibility and milk efficiency due to increased risk of subacute ruminal acidosis. Increased FPL improved ruminal pH status, but had minimal effects on feed intake, ruminal fermentation, nutrient digestibility, and milk production. The results indicate a trade-off between reducing the risk of subacute ruminal acidosis and maximizing ruminal fermentation, feed digestibility, and milk production of dairy cows. The paNDF model showed improvement in the predictability of ruminal pH over the peNDF model, but the accuracy of predictions varied depending upon the diet and ruminal fermentation variables considered in the equations.


Assuntos
Ração Animal/análise , Bovinos/fisiologia , Dieta/veterinária , Digestão , Microbioma Gastrointestinal/fisiologia , Leite/metabolismo , Rúmen/fisiologia , Animais , Bactérias/metabolismo , Bovinos/microbiologia , Feminino , Fermentação , Concentração de Íons de Hidrogênio , Lactação , Proteínas/metabolismo
13.
Plant Cell Physiol ; 60(9): 2077-2085, 2019 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-31165152

RESUMO

Zinc (Zn) and iron (Fe) are essential micronutrients for plant growth. Thus, it is important to understand the mechanisms of uptake, transport and accumulation of these micronutrients in maize to improve crop nutritional quality. Members of the zinc-regulated transporters, iron-regulated transporter-like protein (ZIP) family are responsible for the uptake and transport of divalent metal ions in plant. Previously, we showed that ZmZIP5 functionally complemented the Zn uptake double mutant zrt1zrt2, Fe-uptake double mutant fet3fet4 in yeast. In our ß-glucuronidase (GUS) assay, the germinated seeds, young sheaths, and stems of ZmZIP5-promoter-GUS transgenic plants were stained. We generated and compared two maize lines for this study: Ubi-ZmZIP5, in which ZmZIP5 was constitutively overexpressed, and ZmZIP5i, a RNAi line. At the seedling stage, high levels of Zn and Fe were found in the roots and shoots of Ubi-ZmZIP5 plants, whereas low levels were found in the ZmZIP5i plants. Zn and Fe contents decreased in the seeds of Ubi-ZmZIP5 plants and remained unchanged in the seeds of ZmZIP5i plants. The seeds of Leg-ZmZIP5 plants, in which ZmZIP5 overexpression is specific to the endosperm, had higher levels of Zn and Fe. Our results imply that ZmZIP5 may play a role in Zn and Fe uptake and root-to-shoot translocation. Endosperm-specific ZmZIP5 overexpression could be useful for Zn and Fe biofortification of cereal grains.


Assuntos
Ferro/metabolismo , Proteínas de Plantas/metabolismo , Zea mays/genética , Zinco/metabolismo , Biofortificação , Transporte Biológico , Proteínas de Transporte de Cátions/genética , Proteínas de Transporte de Cátions/metabolismo , Grão Comestível , Expressão Gênica , Genes Reporter , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Sementes/genética , Sementes/fisiologia , Zea mays/fisiologia
15.
J Sci Food Agric ; 99(15): 6751-6760, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31353469

RESUMO

BACKGROUND: Yeast products showed beneficial effects with respect to stabilizing ruminal pH, stimulating ruminal fermentation and improving production efficiency. Batch cultures were conducted to evaluate the effects of yeast products on gas production (GP), dry matter disappearance (DMD) and fermentation characteristics of high-forage substrate. The study was a two media pH (5.8 and 6.5) × five yeasts (three live yeasts, LY: LY1, LY2, LY3; two yeast derivatives, YD: YD4, YD5) × four dosages factorial arrangement, with monensin (Mon) assigned as a positive control. RESULTS: Greater (P < 0.01) GP, DMD, volatile fatty acid (VFA) concentration, ratio of acetate to propionate (A:P) and copy numbers of Fibrobacter succinogenes and Ruminococcus flavefaciens were observed at pH 6.5 than at pH 5.8. The GP kinetics, DMD, VFA concentration, A:P and NH3 -N concentration differed (P < 0.05) among yeasts but varied with media pH or yeast dosages. Increasing doses of LY3 linearly increased DMD (P < 0.04) and VFA concentration (P < 0.001) at media pH 5.8. The DMD linearly (P < 0.02) increased with increased addition of YD4 (pH 6.5) and YD5 (pH 5.8) and the ratio of A:P linearly decreased (P < 0.01) with the addition of YD4 or YD5 at pH 5.8. Overall greater (P < 0.05) GP, A:P (pH 5.8) and DMD (pH 6.5) were observed with yeast products than with Mon. CONCLUSION: LY3 appeared to be an interesting candidate for improving rumen digestibility and fermentation efficiency, particularly at low media pH. YD4 or YD5 improved fermentation efficiency and can be potentially fed as an alternative to Mon. © 2019 Her Majesty the Queen in Right of Canada Journal of the Science of Food and Agriculture © 2019 Society of Chemical Industry.


Assuntos
Ração Animal/microbiologia , Bovinos/metabolismo , Rúmen/química , Saccharomyces cerevisiae/química , Fermento Seco/química , Ração Animal/análise , Animais , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Bactérias/metabolismo , Bovinos/crescimento & desenvolvimento , Bovinos/microbiologia , Digestão , Ácidos Graxos Voláteis/metabolismo , Microbioma Gastrointestinal , Concentração de Íons de Hidrogênio , Rúmen/metabolismo , Rúmen/microbiologia , Saccharomyces cerevisiae/classificação , Fermento Seco/classificação
16.
Plant Cell Physiol ; 59(10): 1942-1955, 2018 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-29917151

RESUMO

Tissue-specific promoters play an important role in plant molecular farming. Here, we describe a strategy to modify the tissue specificity of a maize embryo-specific bidirectional promoter PZmBD1. Six types of cis-elements, i.e. RY repeats (R), GCN4 (G), the prolamin box (P), Skn-1 (S), and the ACGT and AACA (A) motifs, were collected and fused to PZmBD1 to generate eight chimeric putative bidirectional promoters. Qualitative and quantitative analysis of reporter genes driven by the promoters showed that two promoters exhibited high seed-specific bidirectional activity in maize transient and stable transformed systems. The stronger one was chosen and fused to the intergenic region of two gene clusters consisting of four anthocyanin biosynthesis-related genes (ZmBz1, ZmBz2, ZmC1 and ZmR2) and seven reporter genes, resulting in the first embryo and endosperm anthocyanin-rich purple maize. Anthocyanin analysis showed that the total anthocyanin content reaches 2,910 mg kg-1 DW in transgenic maize and cyanidin is the major anthocyanin in transgenic maize, as in natural varieties. The expression profile analysis of endogenous genes showed that the anthocyanin biosynthesis pathway was activated by two transgenic transcription factor genes ZmC1 and ZmR2. Our results indicate that both the modification strategy and these functionally characterized tissue-specific bidirectional promoters generated could be used for genetic research and development of plant biotechnology products. The anthocyanin-rich purple maize could provide economic natural colorants for the food and beverage industry, and valuable germplasm for developing anthocyanin-rich fresh corn.


Assuntos
Antocianinas/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Regiões Promotoras Genéticas/fisiologia , Sementes/metabolismo , Zea mays/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Engenharia Metabólica/métodos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Regiões Promotoras Genéticas/genética , Sementes/genética , Zea mays/genética
17.
J Dairy Sci ; 101(9): 7971-7979, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29960778

RESUMO

The objectives of this study were to evaluate the effects of pretreating dairy cow rations with a fibrolytic enzyme derived from Trichoderma reesei (FETR; mixture of xylanase and cellulase; AB Vista, Wiltshire, UK) on lactation performance, digestibility, and feeding behavior in response to feeding a barley silage-based diet. Before starting the dairy trial, in vitro incubations were conducted to determine whether the addition of FETR would have an effect on these animal performance characteristics when applied to a barley silage-based diet for dairy cows. The dairy trial was performed using 8 Holstein dairy cows. The cows were blocked by parity and assigned randomly to 1 of 4 treatments: 0, 0.5, 0.75, and 1 mL of FETR/kg of dry matter (DM) diet in a replicated Latin square design. The pretreatment was applied to the complete diet during the mixing process. The experimental period continued for 22 d, with each experimental period consisting of a 16-d adaptation period and a 6-d sampling period. The daily feed intake of each individual cow was monitored using Insentec feed bins (RIC system, Insentec, Marknesse, the Netherlands). Feeding behavior characteristics were measured during the entire sampling period using the feed bin attendance data. Milk samples were collected in the last 3 d of each experimental period. The addition of FETR linearly increased the in vitro DM digestibility and tended to improve the in vitro digestibility of barley silage. There was a cubic effect of the enzyme levels on the total-tract DM and neutral detergent fiber digestibility. Maximal digestibility was reached at 0.75 mL of FETR/kg of TMR. The milk fat yield, fat-corrected milk, and energy-corrected milk quadratically responded to the incremental levels of FETR. The milk protein percentage linearly improved in response to FETR. Increasing FETR levels resulted in a quadratic effect on feed efficiency. There was no effect of FETR level on feeding behavior. In conclusion, pretreating dairy cow barley silage-based diet with 0.75 mL of FETR/kg of TMR increased the milk production efficiency of dairy cows fed diet containing 34% barley silage (DM basis). The positive effect of adding FETR could benefit the dairy industry in western Canada, where barley silage-based diets are common.


Assuntos
Ração Animal/análise , Bovinos , Digestão/fisiologia , Comportamento Alimentar , Lactação/fisiologia , Animais , Canadá , Dieta , Feminino , Hordeum , Países Baixos , Gravidez , Silagem , Zea mays
18.
BMC Genomics ; 17: 129, 2016 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-26911482

RESUMO

BACKGROUND: D-myo-inositol phosphates (IPs) are a series of phosphate esters. Myo-inositol hexakisphosphate (phytic acid, IP6) is the most abundant IP and has negative effects on animal and human nutrition. IPs play important roles in plant development, stress responses, and signal transduction. However, the metabolic pathways and possible regulatory mechanisms of IPs in maize are unclear. In this study, the B73 (high in phytic acid) and Qi319 (low in phytic acid) lines were selected for RNA-Seq analysis from 427 inbred lines based on a screening of IP levels. By integrating the metabolite data with the RNA-Seq data at three different kernel developmental stages (12, 21 and 30 days after pollination), co-regulatory networks were constructed to explore IP metabolism and its interactions with other pathways. RESULTS: Differentially expressed gene analyses showed that the expression of MIPS and ITPK was related to differences in IP metabolism in Qi319 and B73. Moreover, WRKY and ethylene-responsive transcription factors (TFs) were common among the differentially expressed TFs, and are likely to be involved in the regulation of IP metabolism. Six co-regulatory networks were constructed, and three were chosen for further analysis. Based on network analyses, we proposed that the GA pathway interacts with the IP pathway through the ubiquitination pathway, and that Ca(2+) signaling functions as a bridge between IPs and other pathways. IP pools were found to be transported by specific ATP-binding cassette (ABC) transporters. Finally, three candidate genes (Mf3, DH2 and CB5) were identified and validated using Arabidopsis lines with mutations in orthologous genes or RNA interference (RNAi)-transgenic maize lines. Some mutant or RNAi lines exhibited seeds with a low-phytic-acid phenotype, indicating perturbation of IP metabolism. Mf3 likely encodes an enzyme involved in IP synthesis, DH2 encodes a transporter responsible for IP transport across organs and CB5 encodes a transporter involved in IP co-transport into vesicles. CONCLUSIONS: This study provides new insights into IP metabolism and regulation, and facilitates our development of a better understanding of the functions of IPs and how they interact with other pathways involved in plant development and stress responses. Three new genes were discovered and preliminarily validated, thereby increasing our knowledge of IP metabolism.


Assuntos
Regulação da Expressão Gênica de Plantas , Genes de Plantas , Fosfatos de Inositol/metabolismo , Zea mays/genética , Processamento Alternativo , Arabidopsis/genética , Redes Reguladoras de Genes , MicroRNAs/genética , Fenótipo , Ácido Fítico/metabolismo , Plantas Geneticamente Modificadas/genética , RNA de Plantas/genética , Sementes/química , Sementes/genética , Análise de Sequência de RNA , Fatores de Transcrição/genética , Transcriptoma
19.
J Exp Bot ; 67(14): 4403-13, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27279278

RESUMO

Bidirectional promoters are identified in diverse organisms with widely varied genome sizes, including bacteria, yeast, mammals, and plants. However, little research has been done on any individual endogenous bidirectional promoter from plants. Here, we describe a promoter positioned in the intergenic region of two defensin-like protein genes, Def1 and Def2 in maize (Zea mays). We examined the expression profiles of Def1 and Def2 in 14 maize tissues by qRT-PCR, and the results showed that this gene pair was expressed abundantly and specifically in seeds. When fused to either green fluorescent protein (GFP) or ß-glucuronidase (GUS) reporter genes, P ZmBD1 , P ZmDef1 , and P ZmDef2 were active and reproduced the expression patterns of both Def1 and Def2 genes in transformed immature maize embryos, as well as in developing seeds of transgenic maize. Comparative analysis revealed that PZmBD1 shared most of the expression characteristics of the two polar promoters, but displayed more stringent embryo specificity, delayed expression initiation, and asymmetric promoter activity. Moreover, a truncated promoter study revealed that the core promoters only exhibit basic bidirectional activity, while interacting with necessary cis-elements, which leads to polarity and different strengths. The sophisticated interaction or counteraction between the core promoter and cis-elements may potentially regulate bidirectional promoters.


Assuntos
DNA Intergênico/fisiologia , Genes de Plantas/genética , Proteínas de Plantas/fisiologia , Regiões Promotoras Genéticas/fisiologia , Zea mays/genética , DNA Intergênico/genética , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Genes de Plantas/fisiologia , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas/genética , Sementes/metabolismo , Sementes/fisiologia , Transcriptoma , Zea mays/fisiologia
20.
BMC Plant Biol ; 15: 31, 2015 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-25644226

RESUMO

BACKGROUND: Nitrogen (N), a critical macronutrient for plant growth and development, is a major limiting factor in most agricultural systems. Microarray analyses have been conducted to investigate genome-wide gene expression in response to changes in N concentrations. Although RNA-Seq analysis can provide a more precise determination of transcript levels, it has not previously been employed to investigate the expression of N-starvation-induced genes. RESULTS: We constructed cDNA libraries from leaf sheaths and roots of rice plants grown under N-deficient or -sufficient conditions for 12 h. Sequencing the libraries resulted in identification of 33,782 annotated genes. A comparison of abundances revealed 1,650 transcripts that were differentially expressed (fold-change ≥ 2) due to an N-deficiency. Among them, 1,158 were differentially expressed in the leaf sheaths (548 up-regulated and 610 down-regulated) and 492 in the roots (276 up, 216 down). Among the 36 deficiency-induced genes first identified via RNA-Seq analyses, 34 were subsequently confirmed by qRT-PCR. Our RNA-Seq data identified 8,509 multi-exonic genes with 19,628 alternative splicing events. However, we saw no significant difference in alternative splicing between N-sufficient and -deficient conditions. We found 2,986 novel transcripts, of which 192 were regulated under the N-deficiency. CONCLUSION: We identified 1,650 genes that were differentially expressed after 12 h of N-starvation. Responses by those genes to a limited supply of N were confirmed by RT-PCR and GUS assays. Our results provide valuable information about N-starvation-responsive genes and will be useful when investigating the signal transduction pathway of N-utilization.


Assuntos
Genes de Plantas , Nitrogênio/metabolismo , Oryza/genética , Transcriptoma , Processamento Alternativo , DNA Complementar , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Análise de Sequência de RNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA