Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 984
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Mol Cell ; 81(6): 1216-1230.e9, 2021 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-33606996

RESUMO

Interferon-γ (IFN-γ)-mediated adaptive resistance is one major barrier to improving immunotherapy in solid tumors. However, the mechanisms are not completely understood. Here, we report that IFN-γ promotes nuclear translocation and phase separation of YAP after anti-PD-1 therapy in tumor cells. Hydrophobic interactions of the YAP coiled-coil domain mediate droplet initiation, and weak interactions of the intrinsically disordered region in the C terminus promote droplet formation. YAP partitions with the transcription factor TEAD4, the histone acetyltransferase EP300, and Mediator1 and forms transcriptional hubs for maximizing target gene transcriptions, independent of the canonical STAT1-IRF1 transcription program. Disruption of YAP phase separation reduced tumor growth, enhanced immune response, and sensitized tumor cells to anti-PD-1 therapy. YAP activity is negatively correlated with patient outcome. Our study indicates that YAP mediates the IFN-γ pro-tumor effect through its nuclear phase separation and suggests that YAP can be used as a predictive biomarker and target of anti-PD-1 combination therapy.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Resistencia a Medicamentos Antineoplásicos , Inibidores de Checkpoint Imunológico/farmacologia , Imunoterapia , Interferon gama/metabolismo , Neoplasias Experimentais , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Fatores de Transcrição/metabolismo , Células A549 , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Células HEK293 , Humanos , Interferon gama/genética , Camundongos , Camundongos Knockout , Neoplasias Experimentais/genética , Neoplasias Experimentais/metabolismo , Neoplasias Experimentais/patologia , Neoplasias Experimentais/terapia , Receptor de Morte Celular Programada 1/genética , Receptor de Morte Celular Programada 1/metabolismo , Fatores de Transcrição/genética , Proteínas de Sinalização YAP
2.
Trends Biochem Sci ; 48(3): 288-302, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36280495

RESUMO

Antisynthetase syndrome (ASSD) is an autoimmune disease characterized by circulating autoantibodies against one of eight aminoacyl-tRNA synthetases (aaRSs). Although these autoantibodies are believed to play critical roles in ASSD pathogenesis, the nature of their roles remains unclear. Here we describe ASSD pathogenesis and discuss ASSD-linked aaRSs - from the WHEP domain that may impart immunogenicity to the role of tRNA in eliciting the innate immune response and the secretion of aaRSs from cells. Through these explorations, we propose that ASSD pathogenesis involves the tissue-specific secretion of aaRSs and that extracellular tRNAs or tRNA fragments and their ability to engage Toll-like receptor signaling may be important disease factors.


Assuntos
Aminoacil-tRNA Sintetases , Miosite , Humanos , Aminoacil-tRNA Sintetases/genética , RNA de Transferência/genética , Autoanticorpos
3.
Nat Chem Biol ; 20(6): 710-720, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38200110

RESUMO

Biomolecular condensates have been proposed to mediate cellular signaling transduction. However, the mechanism and functional consequences of signal condensates are not well understood. Here we report that LATS2, the core kinase of the Hippo pathway, responds to F-actin cytoskeleton reduction and forms condensates. The proline-rich motif (PRM) of LATS2 mediates its condensation. LATS2 partitions with the main components of the Hippo pathway to assemble a signalosome for LATS2 activation and for its stability by physically compartmentalizing from E3 ligase FBXL16 complex-dependent degradation, which in turn mediates yes-associated protein (YAP)-transcriptional coactivator with PDZ-binding motif (TAZ) recruitment and inactivation. This oncogenic FBXL16 complex blocks LATS2 condensation by binding to the PRM region to promote its degradation. Disruption of LATS2 condensation leads to tumor progression. Thus, our study uncovers that the signalosomes assembled by LATS2 condensation provide a compartmentalized and reversible platform for Hippo signaling transduction and protein stability, which have potential implications in cancer diagnosis and therapeutics.


Assuntos
Via de Sinalização Hippo , Proteínas Serina-Treonina Quinases , Transdução de Sinais , Proteínas Supressoras de Tumor , Proteínas Serina-Treonina Quinases/metabolismo , Humanos , Proteínas Supressoras de Tumor/metabolismo , Células HEK293 , Animais , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Linhagem Celular Tumoral , Camundongos , Proteínas de Sinalização YAP/metabolismo , Fatores de Transcrição/metabolismo
4.
Nucleic Acids Res ; 51(19): 10768-10781, 2023 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-37739431

RESUMO

Translational readthrough of UGA stop codons by selenocysteine-specific tRNA (tRNASec) enables the synthesis of selenoproteins. Seryl-tRNA synthetase (SerRS) charges tRNASec with serine, which is modified into selenocysteine and delivered to the ribosome by a designated elongation factor (eEFSec in eukaryotes). Here we found that components of the human selenocysteine incorporation machinery (SerRS, tRNASec, and eEFSec) also increased translational readthrough of non-selenocysteine genes, including VEGFA, to create C-terminally extended isoforms. SerRS recognizes target mRNAs through a stem-loop structure that resembles the variable loop of its cognate tRNAs. This function of SerRS depends on both its enzymatic activity and a vertebrate-specific domain. Through eCLIP-seq, we identified additional SerRS-interacting mRNAs as potential readthrough genes. Moreover, SerRS overexpression was sufficient to reverse premature termination caused by a pathogenic nonsense mutation. Our findings expand the repertoire of selenoprotein biosynthesis machinery and suggest an avenue for therapeutic targeting of nonsense mutations using endogenous factors.


Assuntos
Biossíntese de Proteínas , Serina-tRNA Ligase , Humanos , Códon sem Sentido , Códon de Terminação , RNA Mensageiro/metabolismo , Selenocisteína/genética , Selenocisteína/metabolismo , Selenoproteínas/genética , Serina-tRNA Ligase/genética
5.
Nucleic Acids Res ; 51(18): 10001-10010, 2023 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-37638745

RESUMO

Through their aminoacylation reactions, aminoacyl tRNA-synthetases (aaRS) establish the rules of the genetic code throughout all of nature. During their long evolution in eukaryotes, additional domains and splice variants were added to what is commonly a homodimeric or monomeric structure. These changes confer orthogonal functions in cellular activities that have recently been uncovered. An unusual exception to the familiar architecture of aaRSs is the heterodimeric metazoan mitochondrial SerRS. In contrast to domain additions or alternative splicing, here we show that heterodimeric metazoan mitochondrial SerRS arose from its homodimeric ancestor not by domain additions, but rather by collapse of an entire domain (in one subunit) and an active site ablation (in the other). The collapse/ablation retains aminoacylation activity while creating a new surface, which is necessary for its orthogonal function. The results highlight a new paradigm for repurposing a member of the ancient tRNA synthetase family.


Assuntos
Serina-tRNA Ligase , Animais , Aminoacil-tRNA Sintetases/metabolismo , Domínio Catalítico , Serina-tRNA Ligase/química , Serina-tRNA Ligase/metabolismo
6.
Nucleic Acids Res ; 51(21): e108, 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-37870443

RESUMO

DNA methylation is essential for a wide variety of biological processes, yet the development of a highly efficient and robust technology remains a challenge for routine single-cell analysis. We developed a multiplex scalable single-cell reduced representation bisulfite sequencing (msRRBS) technology. It allows cell-specific barcoded DNA fragments of individual cells to be pooled before bisulfite conversion, free of enzymatic modification or physical capture of the DNA ends, and achieves read mapping rates of 62.5 ± 3.9%, covering 60.0 ± 1.4% of CpG islands and 71.6 ± 1.6% of promoters in K562 cells. Its reproducibility is shown in duplicates of bulk cells with close to perfect correlation (R = 0.97-0.99). At a low 1 Mb of clean reads, msRRBS provides highly consistent coverage of CpG islands and promoters, outperforming the conventional methods with orders of magnitude reduction in cost. Here, we use this method to characterize the distinct methylation patterns and cellular heterogeneity of six cell lines, plus leukemia and hepatocellular carcinoma models. Taking 4 h of hands-on time, msRRBS offers a unique, highly efficient approach for dissecting methylation heterogeneity in a variety of multicellular systems.


Assuntos
Metilação de DNA , DNA , Humanos , Ilhas de CpG/genética , Metilação de DNA/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Células K562 , Reprodutibilidade dos Testes , Análise de Sequência de DNA/métodos , Linhagem Celular Tumoral
7.
Proc Natl Acad Sci U S A ; 119(48): e2212659119, 2022 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-36409883

RESUMO

Platelets play a role not only in hemostasis and thrombosis, but also in inflammation and innate immunity. We previously reported that an activated form of tyrosyl-tRNA synthetase (YRSACT) has an extratranslational activity that enhances megakaryopoiesis and platelet production in mice. Here, we report that YRSACT mimics inflammatory stress inducing a unique megakaryocyte (MK) population with stem cell (Sca1) and myeloid (F4/80) markers through a mechanism dependent on Toll-like receptor (TLR) activation and type I interferon (IFN-I) signaling. This mimicry of inflammatory stress by YRSACT was studied in mice infected by lymphocytic choriomeningitis virus (LCMV). Using Sca1/EGFP transgenic mice, we demonstrated that IFN-I induced by YRSACT or LCMV infection suppressed normal hematopoiesis while activating an alternative pathway of thrombopoiesis. Platelets of inflammatory origin (Sca1/EGFP+) were a relevant proportion of those circulating during recovery from thrombocytopenia. Analysis of these "inflammatory" MKs and platelets suggested their origin in myeloid/MK-biased hematopoietic stem cells (HSCs) that bypassed the classical MK-erythroid progenitor (MEP) pathway to replenish platelets and promote recovery from thrombocytopenia. Notably, inflammatory platelets displayed enhanced agonist-induced activation and procoagulant activities. Moreover, myeloid/MK-biased progenitors and MKs were mobilized from the bone marrow, as evidenced by their presence in the lung microvasculature within fibrin-containing microthrombi. Our results define the function of YRSACT in platelet generation and contribute to elucidate platelet alterations in number and function during viral infection.


Assuntos
Ataxias Espinocerebelares , Trombocitopenia , Trombose , Tirosina-tRNA Ligase , Viroses , Camundongos , Animais , Trombopoese , Camundongos Transgênicos
8.
Proc Natl Acad Sci U S A ; 119(31): e2205469119, 2022 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-35895684

RESUMO

T regulatory (Treg) cells are essential for self-tolerance whereas they are detrimental for dampening the host anti-tumor immunity. How Treg cells adapt to environmental signals to orchestrate their homeostasis and functions remains poorly understood. Here, we identified that transcription factor EB (TFEB) is induced by host nutrition deprivation or interleukin (IL)-2 in CD4+ T cells. The loss of TFEB in Treg cells leads to reduced Treg accumulation and impaired Treg function in mouse models of cancer and autoimmune disease. TFEB intrinsically regulates genes involved in Treg cell differentiation and mitochondria function while it suppresses expression of proinflammatory cytokines independently of its established roles in autophagy. This coordinated action is required for mitochondria integrity and appropriate lipid metabolism in Treg cells. These findings identify TFEB as a critical regulator for orchestrating Treg generation and function, which may contribute to the adaptive responses of T cells to local environmental cues.


Assuntos
Adaptação Fisiológica , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos , Mitocôndrias , Neoplasias , Linfócitos T Reguladores , Adaptação Fisiológica/genética , Adaptação Fisiológica/fisiologia , Animais , Doenças Autoimunes/imunologia , Autofagia/genética , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/fisiologia , Modelos Animais de Doenças , Interleucina-2/metabolismo , Camundongos , Mitocôndrias/genética , Mitocôndrias/metabolismo , Neoplasias/imunologia , Linfócitos T Reguladores/imunologia , Ensaios Antitumorais Modelo de Xenoenxerto
9.
Neurobiol Dis ; 195: 106501, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38583640

RESUMO

Charcot-Marie-Tooth disease (CMT) is a genetic peripheral neuropathy caused by mutations in many functionally diverse genes. The aminoacyl-tRNA synthetase (ARS) enzymes, which transfer amino acids to partner tRNAs for protein synthesis, represent the largest protein family genetically linked to CMT aetiology, suggesting pathomechanistic commonalities. Dominant intermediate CMT type C (DI-CMTC) is caused by YARS1 mutations driving a toxic gain-of-function in the encoded tyrosyl-tRNA synthetase (TyrRS), which is mediated by exposure of consensus neomorphic surfaces through conformational changes of the mutant protein. In this study, we first showed that human DI-CMTC-causing TyrRSE196K mis-interacts with the extracellular domain of the BDNF receptor TrkB, an aberrant association we have previously characterised for several mutant glycyl-tRNA synthetases linked to CMT type 2D (CMT2D). We then performed temporal neuromuscular assessments of YarsE196K mice modelling DI-CMT. We determined that YarsE196K homozygotes display a selective, age-dependent impairment in in vivo axonal transport of neurotrophin-containing signalling endosomes, phenocopying CMT2D mice. This impairment is replicated by injection of recombinant TyrRSE196K, but not TyrRSWT, into muscles of wild-type mice. Augmenting BDNF in DI-CMTC muscles, through injection of recombinant protein or muscle-specific gene therapy, resulted in complete axonal transport correction. Therefore, this work identifies a non-cell autonomous pathomechanism common to ARS-related neuropathies, and highlights the potential of boosting BDNF levels in muscles as a therapeutic strategy.


Assuntos
Transporte Axonal , Fator Neurotrófico Derivado do Encéfalo , Doença de Charcot-Marie-Tooth , Modelos Animais de Doenças , Animais , Doença de Charcot-Marie-Tooth/genética , Doença de Charcot-Marie-Tooth/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Fator Neurotrófico Derivado do Encéfalo/genética , Camundongos , Tirosina-tRNA Ligase/genética , Tirosina-tRNA Ligase/metabolismo , Humanos , Camundongos Transgênicos , Músculo Esquelético/metabolismo , Receptor trkB/metabolismo , Receptor trkB/genética , Mutação
10.
Am J Hum Genet ; 108(5): 929-941, 2021 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-33811806

RESUMO

Proteins involved in transcriptional regulation harbor a demonstrated enrichment of mutations in neurodevelopmental disorders. The Sin3 (Swi-independent 3)/histone deacetylase (HDAC) complex plays a central role in histone deacetylation and transcriptional repression. Among the two vertebrate paralogs encoding the Sin3 complex, SIN3A variants cause syndromic intellectual disability, but the clinical consequences of SIN3B haploinsufficiency in humans are uncharacterized. Here, we describe a syndrome hallmarked by intellectual disability, developmental delay, and dysmorphic facial features with variably penetrant autism spectrum disorder, congenital malformations, corpus callosum defects, and impaired growth caused by disruptive SIN3B variants. Using chromosomal microarray or exome sequencing, and through international data sharing efforts, we identified nine individuals with heterozygous SIN3B deletion or single-nucleotide variants. Five individuals harbor heterozygous deletions encompassing SIN3B that reside within a ∼230 kb minimal region of overlap on 19p13.11, two individuals have a rare nonsynonymous substitution, and two individuals have a single-nucleotide deletion that results in a frameshift and predicted premature termination codon. To test the relevance of SIN3B impairment to measurable aspects of the human phenotype, we disrupted the orthologous zebrafish locus by genome editing and transient suppression. The mutant and morphant larvae display altered craniofacial patterning, commissural axon defects, and reduced body length supportive of an essential role for Sin3 function in growth and patterning of anterior structures. To investigate further the molecular consequences of SIN3B variants, we quantified genome-wide enhancer and promoter activity states by using H3K27ac ChIP-seq. We show that, similar to SIN3A mutations, SIN3B disruption causes hyperacetylation of a subset of enhancers and promoters in peripheral blood mononuclear cells. Together, these data demonstrate that SIN3B haploinsufficiency leads to a hitherto unknown intellectual disability/autism syndrome, uncover a crucial role of SIN3B in the central nervous system, and define the epigenetic landscape associated with Sin3 complex impairment.


Assuntos
Transtorno do Espectro Autista/genética , Haploinsuficiência/genética , Histona Desacetilases/metabolismo , Deficiência Intelectual/genética , Proteínas Repressoras/genética , Acetilação , Adolescente , Animais , Criança , Pré-Escolar , Variações do Número de Cópias de DNA/genética , Feminino , Histonas/química , Histonas/metabolismo , Humanos , Lactente , Larva/genética , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Modelos Moleculares , Mutação , Proteínas Repressoras/deficiência , Proteínas Repressoras/metabolismo , Síndrome , Adulto Jovem , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/deficiência , Proteínas de Peixe-Zebra/genética
11.
J Nutr ; 2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38763264

RESUMO

BACKGROUND: Laying hens undergo intensive metabolism and are vulnerable to cardiac insults. Previous research demonstrated overt heart disorders of broiler chickens induced by dietary Se deficiency. OBJECTIVES: This study aimed to reveal effects and mechanism of dietary Se insufficiency on cardiac injuries of egg-type chicks in their early life. METHODS: White Leghorn chicks (0-d-old, female) were fed a corn-soy, Se-insufficient basal diet (BD, 0.05 mg Se/kg; n = 11) or the BD supplemented with 0.3 mg Se/kg (as sodium selenite; n = 8) for 35 d. Cardiac tissues were collected at the end of study for histology and to determine its relationship with heart Se contents, selenoprotein expression profiles, antioxidant and inflammatory status, and the Toll-like receptor 4/extracellular signal-regulated kinases/p38 map kinase/c-Jun N-terminal kinase (TLR4/ERK/P38/JNK) pathway. RESULTS: Compared with those fed 0.35 mg Se/kg, chicks fed BD had significantly lower body weights and average daily gain, and 28% lower heart Se, and developed cardiac mononuclear inflammatory cell infiltration, along with elevated (P < 0.05) serum concentrations of creatine kinase, aldolase, and interleukin-1 (IL-1). The BD decreased (P < 0.05) body weight and heart glutathione contents and expression of selenoproteins but increased (P < 0.05) heart concentrations of malondialdehyde and reactive oxygen species. These changes were associated with increased (P < 0.05) mRNA and/or protein concentrations of cyclooxygenases, lipoxygenase-12, cytokines (IL-1ß), nuclear factor (NF) κB subunit, chemokines, and receptors (CCL20, CXCR1, and CXCLI2) and increased (P < 0.1) TLR4/ERK /P38/JNK in the heart of Se-insufficient chicks. CONCLUSIONS: Dietary Se insufficiency induces infiltration of mononuclear inflammatory cells in the heart of egg-type chicks. This cardiac injury was mediated by decreased functional expressions of selenoproteins, which resulted in apparent elevated oxidative stress and subsequent activations of the TLR4 pathway and NF κB.

12.
BMC Infect Dis ; 24(1): 426, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38649799

RESUMO

BACKGROUND: Severe acute respiratory infection (SARI), a significant global health concern, imposes a substantial disease burden. In China, there is inadequate data concerning the monitoring of respiratory pathogens, particularly bacteria, among patients with SARI. Therefore, this study aims to delineate the demographic, epidemiological, and aetiological characteristics of hospitalised SARI patients in Central China between 2018 and 2020. METHODS: Eligible patients with SARI admitted to the First Affiliated Hospital of Zhengzhou University between 1 January 2018 and 31 December 2020 were included in this retrospective study. Within the first 24 h of admission, respiratory (including sputum, nasal/throat swabs, bronchoalveolar lavage fluid, thoracocentesis fluid, etc.), urine, and peripheral blood specimens were collected for viral and bacterial testing. A multiplex real-time polymerase chain reaction (PCR) diagnostic approach was used to identify human influenza virus, respiratory syncytial virus, parainfluenza virus, adenovirus, human bocavirus, human coronavirus, human metapneumovirus, and rhinovirus. Bacterial cultures of respiratory specimens were performed with a particular focus on pathogenic microorganisms, including S. pneumoniae, S. aureus, K. pneumoniae, P. aeruginosa, Strep A, H. influenzae, A. baumannii, and E. coli. In cases where bacterial culture results were negative, nucleic acid extraction was performed for PCR to assay for the above-mentioned eight bacteria, as well as L. pneumophila and M. pneumoniae. Additionally, urine specimens were exclusively used to detect Legionella antigens. Furthermore, epidemiological, demographic, and clinical data were obtained from electronic medical records. RESULTS: The study encompassed 1266 patients, with a mean age of 54 years, among whom 61.6% (780/1266) were males, 61.4% (778/1266) were farmers, and 88.8% (1124/1266) sought medical treatment in 2020. Moreover, 80.3% (1017/1266) were housed in general wards. The most common respiratory symptoms included fever (86.8%, 1122/1266) and cough (77.8%, 986/1266). Chest imaging anomalies were detected in 62.6% (792/1266) of cases, and 58.1% (736/1266) exhibited at least one respiratory pathogen, with 28.5% (361/1266) having multiple infections. Additionally, 95.7% (1212/1266) of the patients were from Henan Province, with the highest proportion (38.3%, 486/1266) falling in the 61-80 years age bracket, predominantly (79.8%, 1010/1266) seeking medical aid in summer and autumn. Bacterial detection rate (39.0%, 495/1266) was higher than viral detection rate (36.9%, 468/1266), with the primary pathogens being influenza virus (13.8%, 175/1266), K. pneumoniae (10.0%, 127/1266), S. pneumoniae (10.0%, 127/1266), adenovirus (8.2%, 105/1266), P. aeruginosa (8.2%, 105/1266), M. pneumoniae (7.8%, 100/1266), and respiratory syncytial virus (7.7%, 98/1266). During spring and winter, there was a significant prevalence of influenza virus and human coronavirus, contrasting with the dominance of parainfluenza viruses in summer and autumn. Respiratory syncytial virus and rhinovirus exhibited higher prevalence across spring, summer, and winter. P. aeruginosa, K. pneumoniae, and M. pneumoniae were identified at similar rates throughout all seasons without distinct spikes in prevalence. However, S. pneumoniae showed a distinctive pattern with a prevalence that doubled during summer and winter. Moreover, the positive detection rates of various other viruses and bacteria were lower, displaying a comparatively erratic prevalence trend. Among patients admitted to the intensive care unit, the predominant nosocomial bacteria were K. pneumoniae (17.2%, 43/249), A. baumannii (13.6%, 34/249), and P. aeruginosa (12.4%, 31/249). Conversely, in patients from general wards, predominant pathogens included influenza virus (14.8%, 151/1017), S. pneumoniae (10.4%, 106/1017), and adenovirus (9.3%, 95/1017). Additionally, paediatric patients exhibited significantly higher positive detection rates for influenza virus (23.9%, 11/46) and M. pneumoniae (32.6%, 15/46) compared to adults and the elderly. Furthermore, adenovirus (10.0%, 67/669) and rhinovirus (6.4%, 43/669) were the primary pathogens in adults, while K. pneumoniae (11.8%, 65/551) and A. baumannii (7.1%, 39/551) prevailed among the elderly, indicating significant differences among the three age groups. DISCUSSION: In Central China, among patients with SARI, the prevailing viruses included influenza virus, adenovirus, and respiratory syncytial virus. Among bacteria, K. pneumoniae, S. pneumoniae, P. aeruginosa, and M. pneumoniae were frequently identified, with multiple infections being very common. Additionally, there were substantial variations in the pathogen spectrum compositions concerning wards and age groups among patients. Consequently, this study holds promise in offering insights to the government for developing strategies aimed at preventing and managing respiratory infectious diseases effectively.


Assuntos
Infecções Respiratórias , Humanos , China/epidemiologia , Estudos Retrospectivos , Infecções Respiratórias/epidemiologia , Infecções Respiratórias/virologia , Infecções Respiratórias/microbiologia , Masculino , Feminino , Pessoa de Meia-Idade , Adulto , Idoso , Adolescente , Adulto Jovem , Criança , Pré-Escolar , Doença Aguda , Lactente , Idoso de 80 Anos ou mais , Vírus/isolamento & purificação , Vírus/classificação , Vírus/genética , Hospitalização/estatística & dados numéricos
13.
Exp Cell Res ; 433(1): 113804, 2023 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-37806378

RESUMO

Alcohol dehydrogenase 1 (ADH1) is an alcohol-oxidizing enzyme with poorlydefined biology. Here we report that ADH1 is highly expressed in kidneys of mice with lethal endotoxemia and is transcriptionally upregulated in tubular cells by lipopolysaccharide (LPS) stimuli through TLR4/NF-κB cascade. The Adh1 knockout (Adh1KO) mice with lethal endotoxemia displayed increased susceptibility to acute kidney injury (AKI) but not systemic inflammatory response. Adh1KO mice develop more severe tubular cell apoptosis in comparison to Adh1 wild-type (Adh1WT) mice during course of lethal endotoxemia. ADH1 deficiency facilitates the LPS-induced tubular cell apoptosis in a caspase-dependent manner. Mechanistically, ADH1 deficiency dampens tubular mitophagy that relies on PINK1-Parkin pathway characterized by the reduced membrane potential, reactive oxygen species (ROS) and release of fragmented mtDNA to cytosol. Kidney-specific overexpression of PINK1 and Parkin by adeno-associated viral vector 9 (AAV9) delivery ameliorates AKI exacerbation in Adh1KO mice with lethal endotoxemia. Our study supports the notion that ADH1 is critical for blockade of tubular apoptosis mediated by mitophagy, allowing the rapid identification and targeting of alcohol-metabolic route applicable to septic AKI.

14.
Nature ; 564(7736): E37, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30459470

RESUMO

In Fig. 1b of this Article, a U was inadvertently inserted after G15 in the D loop. The original Article has not been corrected.

15.
Acta Pharmacol Sin ; 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589686

RESUMO

Cardiopulmonary progenitor cells (CPPs) constitute a minor subpopulation of cells that are commonly associated with heart and lung morphogenesis during embryonic development but completely subside after birth. This fact offers the possibility for the treatment of pulmonary heart disease (PHD), in which the lung and heart are both damaged. A reliable source of CPPs is urgently needed. In this study, we reprogrammed human cardiac fibroblasts (HCFs) into CPP-like cells (or induced CPPs, iCPPs) and evaluated the therapeutic potential of iCPP-derived exosomes for acute lung injury (ALI). iCPPs were created in passage 3 primary HCFs by overexpressing GLI1, WNT2, ISL1 and TBX5 (GWIT). Exosomes were isolated from the culture medium of passage 6-8 GWIT-iCPPs. A mouse ALI model was established by intratracheal instillation of LPS. Four hours after LPS instillation, ALI mice were treated with GWIT-iCPP-derived exosomes (5 × 109, 5 × 1010 particles/mL) via intratracheal instillation. We showed that GWIT-iCPPs could differentiate into cell lineages, such as cardiomyocyte-like cells, endothelial cells, smooth muscle cells and alveolar epithelial cells, in vitro. Transcription analysis revealed that GWIT-iCPPs have potential for heart and lung development. Intratracheal instillation of iCPP-derived exosomes dose-dependently alleviated LPS-induced ALI in mice by attenuating lung inflammation, promoting endothelial function and restoring capillary endothelial cells and the epithelial cells barrier. This study provides a potential new method for the prevention and treatment of cardiopulmonary injury, especially lung injury, and provides a new cell model for drug screening.

16.
Arch Insect Biochem Physiol ; 115(2): e22094, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38409857

RESUMO

The predatory stink bug Arma custos has been selected as an effective biological control agent and has been successfully massly bred and released into fields for the control of a diverse insect pests. As a zoophytophagous generalist, A. custos relies on a complex neuropeptide signaling system to prey on distinct food and adapt to different environments. However, information about neuropeptide signaling genes in A. custos has not been reported to date. In the present study, a total of 57 neuropeptide precursor transcripts and 41 potential neuropeptide G protein-coupled receptor (GPCR) transcripts were found mainly using our sequenced transcriptome data. Furthermore, a number of neuropeptides and their GPCR receptors that were enriched in guts and salivary glands of A. custos were identified, which might play critical roles in feeding and digestion. Our study provides basic information for an in-depth understanding of biological and ecological characteristics of the predatory bug and would aid in the development of better pest management strategies based on the effective utilization and protection of beneficial natural enemies.


Assuntos
Hemípteros , Heterópteros , Neuropeptídeos , Animais , Heterópteros/genética , Receptores Acoplados a Proteínas G/genética , Neuropeptídeos/genética
17.
J Chem Phys ; 160(19)2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38747429

RESUMO

This paper reports on the effects of shear rate and interface modeling parameters on the hydrodynamic slip length (LS) for water-graphite interfaces calculated using non-equilibrium molecular dynamics. Five distinct non-bonded solid-liquid interaction parameters were considered to assess their impact on LS. The interfacial force field derivations included sophisticated electronic structure calculation-informed and empirically determined parameters. All interface models exhibited a similar and bimodal LS response when varying the applied shear rate. LS in the low shear rate regime (LSR) is in good agreement with previous calculations obtained through equilibrium molecular dynamics. As the shear rate increases, LS sharply increases and asymptotes to a constant value in the high shear regime (HSR). It is noteworthy that LS in both the LSR and HSR can be characterized by the density depletion length, whereas solid-liquid adhesion metrics failed to do so. For all interface models, LHSR calculations were, on average, ∼28% greater than LLSR, and this slip jump was confirmed using the SPC/E and TIP4P/2005 water models. To address the LS transition from the LSR to the HSR, the viscosity of water and the interfacial friction coefficient were investigated. It was observed that in the LSR, the viscosity and friction coefficient decreased at a similar rate, while in the LSR-to-HSR transition, the friction coefficient decreased at a faster rate than the shear viscosity until they reached a new equilibrium, hence explaining the LS-bimodal behavior. This study provides valuable insights into the interplay between interface modeling parameters, shear rate, and rheological properties in understanding hydrodynamic slip behavior.

18.
BMC Pulm Med ; 24(1): 100, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38413948

RESUMO

OBJECTIVES: Tuberculosis (TB) is a significant global health concern, given its high rates of morbidity and mortality. The diagnosis using urine lipoarabinomannan (LAM) primarily benefits HIV co-infected TB patients with low CD4 counts. The focus of this study was to develop an ultra-sensitive LAM assay intended for diagnosing tuberculosis across a wider spectrum of TB patients. DESIGN & METHODS: To heighten the sensitivity of the LAM assay, we employed high-affinity rabbit monoclonal antibodies and selected a highly sensitive chemiluminescence LAM assay (CLIA-LAM) for development. The clinical diagnostic criteria for active TB (ATB) were used as a control. A two-step sample collection process was implemented, with the cutoff determined initially through a ROC curve. Subsequently, additional clinical samples were utilized for the validation of the assay. RESULTS: In the assay validation phase, a total of 87 confirmed active TB patients, 19 latent TB infection (LTBI) patients, and 104 healthy control samples were included. Applying a cutoff of 1.043 (pg/mL), the CLIA-LAM assay demonstrated a sensitivity of 55.2% [95%CI (44.13%~65.85%)], and a specificity of 100% [95%CI (96.52%~100.00%)], validated against clinical diagnostic results using the Mann-Whitney U test. Among 11 hematogenous disseminated TB patients, the positive rate was 81.8%. Importantly, the CLIA-LAM assay consistently yielded negative results in the 19 LTBI patients. CONCLUSION: Overall, the combination of high-affinity antibodies and the CLIA method significantly improved the sensitivity and specificity of the LAM assay. It can be used for the diagnosis of active TB, particularly hematogenous disseminated TB.


Assuntos
Infecções por HIV , Tuberculose Latente , Tuberculose Miliar , Humanos , Luminescência , Infecções por HIV/complicações , Sensibilidade e Especificidade , Tuberculose Latente/diagnóstico , Lipopolissacarídeos
19.
Proc Natl Acad Sci U S A ; 118(13)2021 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-33753480

RESUMO

Through dominant mutations, aminoacyl-tRNA synthetases constitute the largest protein family linked to Charcot-Marie-Tooth disease (CMT). An example is CMT subtype 2N (CMT2N), caused by individual mutations spread out in AlaRS, including three in the aminoacylation domain, thereby suggesting a role for a tRNA-charging defect. However, here we found that two are aminoacylation defective but that the most widely distributed R329H is normal as a purified protein in vitro and in unfractionated patient cell samples. Remarkably, in contrast to wild-type (WT) AlaRS, all three mutant proteins gained the ability to interact with neuropilin 1 (Nrp1), the receptor previously linked to CMT pathogenesis in GlyRS. The aberrant AlaRS-Nrp1 interaction is further confirmed in patient samples carrying the R329H mutation. However, CMT2N mutations outside the aminoacylation domain do not induce the Nrp1 interaction. Detailed biochemical and biophysical investigations, including X-ray crystallography, small-angle X-ray scattering, hydrogen-deuterium exchange (HDX), switchSENSE hydrodynamic diameter determinations, and protease digestions reveal a mutation-induced structural loosening of the aminoacylation domain that correlates with the Nrp1 interaction. The b1b2 domains of Nrp1 are responsible for the interaction with R329H AlaRS. The results suggest Nrp1 is more broadly associated with CMT-associated members of the tRNA synthetase family. Moreover, we revealed a distinct structural loosening effect induced by a mutation in the editing domain and a lack of conformational impact with C-Ala domain mutations, indicating mutations in the same protein may cause neuropathy through different mechanisms. Our results show that, as with other CMT-associated tRNA synthetases, aminoacylation per se is not relevant to the pathology.


Assuntos
Alanina-tRNA Ligase/metabolismo , Doença de Charcot-Marie-Tooth/genética , Neuropilina-1/metabolismo , Alanina-tRNA Ligase/química , Alanina-tRNA Ligase/genética , Aminoacilação/genética , Células Cultivadas , Doença de Charcot-Marie-Tooth/sangue , Cristalografia por Raios X , Medição da Troca de Deutério , Humanos , Linfócitos , Mutação , Neuropilina-1/genética , Cultura Primária de Células , Ligação Proteica/genética , Domínios Proteicos/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/ultraestrutura , Espalhamento a Baixo Ângulo
20.
Nano Lett ; 23(11): 5123-5130, 2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37272668

RESUMO

Developing cost-effective and highly efficient photocathodes toward polysulfide redox reduction is highly desirable for advanced quantum dot (QD) photovoltaics. Herein, we demonstrate nitrogen doped carbon (N-C) shell-supported iron single atom catalysts (Fe-SACs) capable of catalyzing polysulfide reduction in QD photovoltaics for the first time. Specifically, Fe-SACs with FeN4 active sites feature a power conversion efficiency of 13.7% for ZnCuInSe-QD photovoltaics (AM1.5G, 100 mW/cm2), which is the highest value for ZnCuInSe QD-based photovoltaics, outperforming those of Cu-SACs and N-C catalysts. Compared with N-C, Fe-SACs exhibit suitable energy level matching with polysulfide redox couples, revealed by the Kelvin probe force microscope, which accelerates the charge transferring at the interfaces of catalyst/polysulfide redox couple. Density functional theory calculations demonstrate that the outstanding catalytic activity of Fe-SACs originates from the preferable adsorption of S42- on the FeN4 active sites and the high activation degree of the S-S bonds in S42- initiated by the FeN4 active sites.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA