Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Med Phys ; 50(10): 6096-6117, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37535932

RESUMO

PURPOSE: The recently proposed sparsifying transform (ST) models incur low computational cost and have been applied to medical imaging. Meanwhile, deep models with nested network structure reveal great potential for learning features in different layers. In this study, we propose a network-structured ST learning approach for X-ray computed tomography (CT), which we refer to as multi-layer clustering-based residual sparsifying transform (MCST) learning. The proposed MCST scheme learns multiple different unitary transforms in each layer by dividing each layer's input into several classes. We apply the MCST model to low-dose CT (LDCT) reconstruction by deploying the learned MCST model into the regularizer in penalized weighted least squares (PWLS) reconstruction. METHODS: The proposed MCST model combines a multi-layer sparse representation structure with multiple clusters for the features in each layer that are modeled by a rich collection of transforms. We train the MCST model in an unsupervised manner via a block coordinate descent (BCD) algorithm. Since our method is patch-based, the training can be performed with a limited set of images. For CT image reconstruction, we devise a novel algorithm called PWLS-MCST by integrating the pre-learned MCST signal model with PWLS optimization. RESULTS: We conducted LDCT reconstruction experiments on XCAT phantom data, Numerical Mayo Clinical CT dataset and "LDCT image and projection dataset" (Clinical LDCT dataset). We trained the MCST model with two (or three) layers and with five clusters in each layer. The learned transforms in the same layer showed rich features while additional information is extracted from representation residuals. Our simulation results and clinical results demonstrate that PWLS-MCST achieves better image reconstruction quality than the conventional filtered back-projection (FBP) method and PWLS with edge-preserving (EP) regularizer. It also outperformed recent advanced methods like PWLS with a learned multi-layer residual sparsifying transform (MARS) prior and PWLS with a union of learned transforms (ULTRA), especially for displaying clear edges and preserving subtle details. CONCLUSIONS: In this work, a multi-layer sparse signal model with a nested network structure is proposed. We refer this novel model as the MCST model that exploits multi-layer residual maps to sparsify the underlying image and clusters the inputs in each layer for accurate sparsification. We presented a new PWLS framework with a learned MCST regularizer for LDCT reconstruction. Experimental results show that the proposed PWLS-MCST provides clearer reconstructions than several baseline methods. The code for PWLS-MCST is released at https://github.com/Xikai97/PWLS-MCST.

2.
Med Phys ; 48(10): 6388-6400, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34514587

RESUMO

PURPOSE: Signal models based on sparse representations have received considerable attention in recent years. On the other hand, deep models consisting of a cascade of functional layers, commonly known as deep neural networks, have been highly successful for the task of object classification and have been recently introduced to image reconstruction. In this work, we develop a new image reconstruction approach based on a novel multilayer model learned in an unsupervised manner by combining both sparse representations and deep models. The proposed framework extends the classical sparsifying transform model for images to a Multilayer residual sparsifying transform (MARS) model, wherein the transform domain data are jointly sparsified over layers. We investigate the application of MARS models learned from limited regular-dose images for low-dose CT reconstruction using penalized weighted least squares (PWLS) optimization. METHODS: We propose new formulations for multilayer transform learning and image reconstruction. We derive an efficient block coordinate descent algorithm to learn the transforms across layers, in an unsupervised manner from limited regular-dose images. The learned model is then incorporated into the low-dose image reconstruction phase. RESULTS: Low-dose CT experimental results with both the XCAT phantom and Mayo Clinic data show that the MARS model outperforms conventional methods such as filtered back-projection and PWLS methods based on the edge-preserving (EP) regularizer in terms of two numerical metrics (RMSE and SSIM) and noise suppression. Compared with the single-layer learned transform (ST) model, the MARS model performs better in maintaining some subtle details. CONCLUSIONS: This work presents a novel data-driven regularization framework for CT image reconstruction that exploits learned multilayer or cascaded residual sparsifying transforms. The image model is learned in an unsupervised manner from limited images. Our experimental results demonstrate the promising performance of the proposed multilayer scheme over single-layer learned sparsifying transforms. Learned MARS models also offer better image quality than typical nonadaptive PWLS methods.


Assuntos
Processamento de Imagem Assistida por Computador , Tomografia Computadorizada por Raios X , Algoritmos , Análise dos Mínimos Quadrados , Imagens de Fantasmas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA