Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Assunto principal
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 230: 123115, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36599385

RESUMO

Inspired by phenol-amine chemistry of mussels, a synthesis-free and fully biomass adhesive composed of chitosan and tannin (CST) was successfully developed by a facile method. The performance of CST adhesive for bonding bamboo, wood and bamboo-wood substrates were tested. When 160 °C hot-press temperature was used, dry lap shear strength above 5.00 MPa was obtained. The CST adhesive has remarkable water resistance and low cure temperature as high wet shear strength of 2.37 MPa for plybamboo specimens was achieved after 3 h boiling in water even though low hot-press temperature of 100 °C was applied. Further, high strength of 1.78 MPa remained after 72 h boiling. With higher hot-press temperatures used, wet shear strength above 3.60 MPa was achieved. The adhesion performance for wood substrate was also superior to other phenol-amine adhesives reported in literatures. The bamboo-wood composites assembled with CST adhesive show excellent mechanical performance, specifically modulus of rupture (MOR) of 100-133 MPa and modulus of elasticity (MOE) of 10-13 GPa were achieved with different hot-press temperatures used. Given the advantages including outstanding water resistance, facile preparation, fully biomass, and low cure temperature, CST adhesive exhibited great potential to be an ideal alternative to formaldehyde-based resin for wood and bamboo bonding.


Assuntos
Quitosana , Adesivos , Taninos , Biomassa , Água , Fenóis
2.
Materials (Basel) ; 16(11)2023 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-37297155

RESUMO

The performance of urea-formaldehyde (UF) resin and its formaldehyde emission is a natural contradiction. High molar ratio UF resin performance is very good, but its formaldehyde release is high; low molar ratio UF resin formaldehyde release is reduced, but the resin itself performance becomes very bad. In order to solve this traditional problem, an excellent strategy of UF resin modified by hyperbranched polyurea is proposed. In this work, hyperbranched polyurea (UPA6N) is first synthesized by a simple method without any solvent. UPA6N is then added into industrial UF resin in different proportions as additives to manufacture particleboard and test its related properties. UF resin with a low molar ratio has a crystalline lamellar structure, and UF-UPA6N resin has an amorphous structure and rough surface. The results show that internal bonding strength increased by 58.5%, modulus of rupture increased by 24.4%, 24 h thickness swelling rate (%) decreased by 54.4%, and formaldehyde emission decreased by 34.6% compared with the unmodified UF particleboard. This may be ascribed to the polycondensation between UF and UPA6N, while UF-UPA6N resin forms more dense three-dimensional network structures. Finally, the application of UF-UPA6N resin adhesives to bond particleboard significantly improves the adhesive strength and water resistance and reduces formaldehyde emission, suggesting that the adhesive can be used as a green and eco-friendly adhesive resource for the wood industry.

3.
ACS Appl Mater Interfaces ; 13(7): 8832-8843, 2021 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-33587587

RESUMO

The design and synthesis of low-cost and efficient bifunctional electrocatalysts for water splitting are critical and challenging. Hereby, a bimetallic phosphide embedded in a N and P co-doped porous carbon (FeCoP2@NPPC) material was synthesized by using sustainable biomass-derived N- and P-containing carbohydrates and non-noble metal salts as precursors. The obtained material exhibits good catalytic activities in hydrogen evolution reaction (HER), oxygen evolution reaction (OER), and overall water splitting. The bimetallic alloy phosphide (FeCoP2) is the active site for electrocatalysis. Theoretical calculation indicates that the sub-layer Fe atoms and top-layer Co atoms in FeCoP2 exhibit a synergistic effect for enhanced electrocatalytic performance. The carbon matrix around the FeCoP2 can prevent the corrosion during the catalytic reactions. The hierarchically porous structure of the FeCoP2@NPPC material can promote the transfer of electrons and electrolyte, and increase the contact area of the active sites and electrolytes. N- and P-containing functionalities improve the wetting and conductivity properties of the porous carbon. Due to the synergistic effects, FeCoP2@NPPC requires a low overpotential of 114 and 150 mV at the current density of 10 mA cm-2 for HER in 0.5 M H2SO4 and 1.0 M KOH, and an overpotential of 236 mV for OER in 1.0 M KOH solution, which are much lower than those of FeP@NPPC and CoP@NPPC. Based on the density functional theory calculation, FeCoP2 yields the smallest Gibbs free energy change of rate-determining step among the samples, which leads to better electrochemical performances. In addition, when FeCoP2@NPPC was used as a bifunctional catalyst in water splitting, the electrolyzer needed a low voltage of 1.60 V to deliver the current density of 10 mA cm-2. Furthermore, this work provides a strategy for preparing sustainable, stable, and highly active electrocatalysts for water splitting.

4.
ACS Omega ; 5(2): 1109-1119, 2020 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-31984267

RESUMO

DNA molecular compaction/decompaction is of great significance for the exploration of basic life processes, the research of biomedical and genetic engineering, and so forth. However, the detailed mechanism of DNA compaction/decompaction caused by surfactants remains an open and challenging problem that has not been fully solved so far. In this paper, a sort of novel solid substrate, nanoPAA-ZnCl2-AuLs, with good stability and high sensitivity, was prepared by a self-assembly method. Based on this substrate, the surface-enhanced Raman scattering (SERS) technology was employed to investigate characteristics of interactions between DNA molecules and surfactants at a single molecular level. SERS spectra of calf thymus DNA (ctDNA), cetyl trimethyl ammonium bromide (CTAB), and sodium dodecyl sulfate (SDS) with a concentration as low as 10-9 M, and SERS spectra of ctDNA-CTAB and ctDNA-CTAB-SDS composites were collected, respectively. The interactions between ctDNA and surfactants were analyzed by changes in SERS spectra, for example, disappearances and appearances of SERS bands and relative changes of peak intensity, in which CTAB resulted in the compaction of the DNA molecule while SDS induced the decompaction of the ctDNA-CTAB complex. Moreover, UV-visible spectrophotometry was employed to demonstrate the compaction/decompaction of ctDNA molecules caused by surfactants. The local binding modes of ctDNA molecules and surfactant molecules were expounded. This work will be helpful for understanding biological processes such as DNA compaction and recombination within nucleus or/and cells and for the development of gene therapy technologies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA