Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(13): e2306814121, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38513102

RESUMO

Triple-negative breast cancer (TNBC) is a subtype of breast cancer with aggressive behavior and poor prognosis. Current therapeutic options available for TNBC patients are primarily chemotherapy. With our evolving understanding of this disease, novel targeted therapies, including poly ADP-ribose polymerase (PARP) inhibitors, antibody-drug conjugates, and immune-checkpoint inhibitors, have been developed for clinical use. Previous reports have demonstrated the essential role of estrogen receptor ß (ERß) in TNBC, but the detailed molecular mechanisms downstream ERß activation in TNBC are still far from elucidated. In this study, we demonstrated that a specific ERß agonist, LY500307, potently induces R-loop formation and DNA damage in TNBC cells. Subsequent interactome experiments indicated that the residues 151 to 165 of U2 small nuclear RNA auxiliary factor 1 (U2AF1) and the Trp439 and Lys443 of ERß were critical for the binding between U2AF1 and ERß. Combined RNA sequencing and ribosome sequencing analysis demonstrated that U2AF1-regulated downstream RNA splicing of 5-oxoprolinase (OPLAH) could affect its enzymatic activity and is essential for ERß-induced R-loop formation and DNA damage. In clinical samples including 115 patients from The Cancer Genome Atlas (TCGA) and 32 patients from an in-house cohort, we found a close correlation in the expression of ESR2 and U2AF1 in TNBC patients. Collectively, our study has unraveled the molecular mechanisms that explain the therapeutic effects of ERß activation in TNBC, which provides rationale for ERß activation-based single or combined therapy for patients with TNBC.


Assuntos
Processamento Alternativo , Benzopiranos , Receptor beta de Estrogênio , Estruturas R-Loop , Fator de Processamento U2AF , Neoplasias de Mama Triplo Negativas , Humanos , Receptor beta de Estrogênio/agonistas , Receptor beta de Estrogênio/metabolismo , Fator de Processamento U2AF/química , Fator de Processamento U2AF/genética , Fator de Processamento U2AF/metabolismo , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/metabolismo , Terapia Combinada , Células MDA-MB-231 , Processamento Alternativo/efeitos dos fármacos , Benzopiranos/farmacologia , Benzopiranos/uso terapêutico , Ligação Proteica , Sítios de Ligação
2.
J Diabetes Res ; 2024: 1222395, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38725443

RESUMO

This study is aimed at assessing the impact of soluble dietary fiber inulin on the treatment of diabetes-related chronic inflammation and kidney injury in mice with type 2 diabetes (T2DM). The T2DM model was created by feeding the Institute of Cancer Research (ICR) mice a high-fat diet and intraperitoneally injecting them with streptozotocin (50 mg/kg for 5 consecutive days). The thirty-six ICR mice were divided into three dietary groups: the normal control (NC) group, the T2DM (DM) group, and the DM + inulin diet (INU) group. The INU group mice were given inulin at the dose of 500 mg/kg gavage daily until the end of the 12th week. After 12 weeks, the administration of inulin resulted in decreased serum levels of fasting blood glucose (FBG), low-density lipoprotein cholesterol (LDL-C), blood urea nitrogen (BUN), and creatinine (CRE). The administration of inulin not only ameliorated renal injury but also resulted in a reduction in the mRNA expressions of inflammatory factors in the spleen and serum oxidative stress levels, when compared to the DM group. Additionally, inulin treatment in mice with a T2DM model led to a significant increase in the concentrations of three primary short-chain fatty acids (SCFAs) (acetic acid, propionic acid, and butyric acid), while the concentration of advanced glycation end products (AGEs), a prominent inflammatory factor in diabetes, exhibited a significant decrease. The results of untargeted metabolomics indicate that inulin has the potential to alleviate inflammatory response and kidney damage in diabetic mice. This beneficial effect is attributed to its impact on various metabolic pathways, including glycerophospholipid metabolism, taurine and hypotaurine metabolism, arginine biosynthesis, and tryptophan metabolism. Consequently, oral inulin emerges as a promising treatment option for diabetes and kidney injury.


Assuntos
Glicemia , Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Nefropatias Diabéticas , Inflamação , Inulina , Animais , Masculino , Camundongos , Glicemia/metabolismo , Glicemia/efeitos dos fármacos , Nitrogênio da Ureia Sanguínea , Diabetes Mellitus Experimental/sangue , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/tratamento farmacológico , Nefropatias Diabéticas/sangue , Nefropatias Diabéticas/tratamento farmacológico , Nefropatias Diabéticas/etiologia , Dieta Hiperlipídica , Ácidos Graxos Voláteis/metabolismo , Inflamação/tratamento farmacológico , Inulina/farmacologia , Rim/efeitos dos fármacos , Rim/metabolismo , Rim/patologia , Metabolômica , Camundongos Endogâmicos ICR , Estresse Oxidativo/efeitos dos fármacos
3.
Sci China Life Sci ; 67(8): 1549-1562, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39037695

RESUMO

Mechanics shape cell and tissue plasticity and maintain their homeostasis. In cancers, mechanical signals regulate cancer hallmarks via mechanotransduction pathways, such as proliferation, metastasis and metabolic reprogramming. However, comprehensive characterization of mechanotransduction pathway genes and their clinical relevance across different cancer types remains untouched. Herein, we systematically portrayed the alterations of mechanotransduction pathway genes across 31 cancer types using The Cancer Genome Atlas (TCGA) databases. All the cancer types could be categorized into 6 subtypes based upon the transcriptional pattern of mechanics pathway genes. Each subtype has its own unique molecular expression pattern, mutation landscapes, immune infiltrates, and patient clinical outcome. We further found that the responses of two subtypes of cancers, one with the optimal outcome and the other with the worst prognosis, to a classical mechanotherapeutic agent (Fasudil, RhoA/ROCK inhibitor) were totally different, indicating that our cancer stratification system based upon mechanotransduction pathway genes could inform clinical responses of patients to mechanotherapeutic agents. Collectively, our study provides a novel pan-cancer landscape of the mechanotransduction pathways and underscores its potential clinical significance in the prediction of clinical prognosis and therapeutic responses to mechanotherapy among cancer patients.


Assuntos
Mecanotransdução Celular , Neoplasias , Humanos , Neoplasias/genética , Neoplasias/terapia , Neoplasias/imunologia , Prognóstico , Genômica , Regulação Neoplásica da Expressão Gênica , Mutação
4.
Nat Cancer ; 5(1): 147-166, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38172338

RESUMO

Glioblastoma is the most lethal primary brain tumor with glioblastoma stem cells (GSCs) atop a cellular hierarchy. GSCs often reside in a perivascular niche, where they receive maintenance cues from endothelial cells, but the role of heterogeneous endothelial cell populations remains unresolved. Here, we show that lymphatic endothelial-like cells (LECs), while previously unrecognized in brain parenchyma, are present in glioblastomas and promote growth of CCR7-positive GSCs through CCL21 secretion. Disruption of CCL21-CCR7 paracrine communication between LECs and GSCs inhibited GSC proliferation and growth. LEC-derived CCL21 induced KAT5-mediated acetylation of HMGCS1 on K273 in GSCs to enhance HMGCS1 protein stability. HMGCS1 promoted cholesterol synthesis in GSCs, favorable for tumor growth. Expression of the CCL21-CCR7 axis correlated with KAT5 expression and HMGCS1K273 acetylation in glioblastoma specimens, informing patient outcome. Collectively, glioblastomas contain previously unrecognized LECs that promote the molecular crosstalk between endothelial and tumor cells, offering potentially alternative therapeutic strategies.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Humanos , Glioblastoma/terapia , Citocinas/metabolismo , Células Endoteliais/metabolismo , Receptores CCR7/metabolismo , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Proliferação de Células , Colesterol/metabolismo
5.
J Diabetes Res ; 2023: 8810106, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38162631

RESUMO

Nephropathy injury is a prevalent complication observed in individuals with diabetes, serving as a prominent contributor to end-stage renal disease, and the advanced glycation products (AGEs) are important factors that induce kidney injury in patients with diabetes. Addressing this condition remains a challenging aspect in clinical practice. The aim of this study was to explore the effects of Lactiplantibacillus plantarum NKK20 strain (NKK20) which protects against diabetic kidney disease (DKD) based on animal and cell models. The results showed that the NKK20 can significantly reduce renal inflammatory response, serum oxidative stress response, and AGE concentration in diabetic mice. After treatment with NKK20, the kidney damage of diabetic mice was significantly improved, and more importantly, the concentration of butyrate, a specific anti-inflammatory metabolite of intestinal flora in the stool of diabetic mice, was significantly increased. In addition, nontargeted metabolomics analysis showed a significant difference between the metabolites in the mouse serum contents of the NKK20 administration group and those in the nephropathy injury group, in which a total of 24 different metabolites that were significantly affected by NKK20 were observed, and these metabolites were mainly involved in glycerophospholipid metabolism and arachidonic acid metabolism. Also, the administration of butyrate to human kidney- (HK-) 2 cells that were stimulated by AGEs resulted in a significant upregulation of ZO-1, Occludin, and E-cadherin gene expressions and downregulation of α-SMA gene expression. This means that butyrate can maintain the tight junction structure of HK-2 cells and inhibit fibrosis. Butyrate also significantly inhibited the activation of PI3K/Akt pathway. These results indicate that NKK20 can treat kidney injury in diabetic mice by reducing blood glucose and AGE concentration and increasing butyrate production in the intestine. By inhibiting PI3K pathway activation in HK-2 cells, butyrate maintains a tight junction structure of renal tubule epithelial cells and inhibits renal tissue fibrosis. These results suggest that NKK20 is helpful to prevent and treat the occurrence and aggravation of diabetic kidney injury.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Nefropatias Diabéticas , Humanos , Camundongos , Animais , Nefropatias Diabéticas/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Butiratos/metabolismo , Butiratos/uso terapêutico , Diabetes Mellitus Experimental/metabolismo , Rim/metabolismo , Intestinos , Diabetes Mellitus Tipo 2/metabolismo , Fibrose
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA