Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 60(51): 26694-26701, 2021 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-34643975

RESUMO

It usually requires high temperature and high pressure to reform methanol with water to hydrogen with high turnover frequency (TOF). Here we show that hydrogen can be produced from alkaline methanol on a light-triggered multi-layer system with a very high hydrogen evolution rate up to ca. 1 µmol s-1 under the illumination of a standard Pt-decorated carbon nitride. The system can achieve a remarkable TOF up to 1.8×106  moles of hydrogen per mole of Pt per hour under mild conditions. The total turnover number (TTN) of 470 000 measured over 38 hours is among the highest reported. The system does not lead to any COx emissions, hence it could feed clean hydrogen to fuel cells. In contrast to a slurry system, the proposed multi-layer system avoids particle aggregation and effectively uses light and Pt active sites. The performance is also attributed to the light-triggered reforming of alkaline methanol. This notable performance is a promising step toward practical light-driven hydrogen generation.

2.
Angew Chem Int Ed Engl ; 58(46): 16558-16562, 2019 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-31433100

RESUMO

The growing demand for perovskite nanocrystals (NCs) for various applications has stimulated the development of facile synthetic methods. Perovskite NCs have often been synthesized by either ligand-assisted reprecipitation (LARP) at room temperature or by hot-injection at high temperatures and inert atmosphere. However, the use of polar solvents in LARP affects their stability. Herein, we report on the spontaneous crystallization of perovskite NCs in nonpolar organic media at ambient conditions by simple mixing of precursor-ligand complexes without application of any external stimuli. The shape of the NCs can be controlled from nanocubes to nanoplatelets by varying the ratio of monovalent (e.g. formamidinium+ (FA+ ) and Cs+ ) to divalent (Pb2+ ) cation-ligand complexes. The precursor-ligand complexes are stable for months, and thus perovskite NCs can be readily prepared prior to use. Moreover, we show that this versatile synthetic process is scalable and generally applicable for perovskite NCs of different compositions.

3.
Nano Lett ; 17(4): 2328-2335, 2017 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-28248512

RESUMO

In planar n-i-p heterojunction perovskite solar cells, the electron transport layer (ETL) plays important roles in charge extraction and determine the morphology of the perovskite film. Here, we report a solution-processed carbon quantum dots (CQDs)/TiO2 composite that has negligible absorption in the visible spectral range, a very attractive feature for perovskite solar cells. Using this novel CQDs/TiO2 ETL in conjunction with a planar n-i-p heterojunction, we achieved an unprecedented efficiency of ∼19% under standard illumination test conditions. It was found that a CQDs/TiO2 combination increases both the open circuit voltage and short-circuits current density as compared to using TiO2 alone. Various advanced spectroscopic characterizations including ultrafast spectroscopy, ultraviolet photoelectron spectroscopy, and electronic impedance spectroscopy elucidate that the CQDs increases the electronic coupling between the CH3NH3PbI3-xClx and TiO2 ETL interface as well as energy levers that contribute to electron extraction.

4.
Nano Lett ; 16(2): 1009-16, 2016 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-26790037

RESUMO

Hybrid perovskites have shown astonishing power conversion efficiencies owed to their remarkable absorber characteristics including long carrier lifetimes, and a relatively substantial defect tolerance for solution-processed polycrystalline films. However, nonradiative charge carrier recombination at grain boundaries limits open circuit voltages and consequent performance improvements of perovskite solar cells. Here we address such recombination pathways and demonstrate a passivation effect through guanidinium-based additives to achieve extraordinarily enhanced carrier lifetimes and higher obtainable open circuit voltages. Time-resolved photoluminescence measurements yield carrier lifetimes in guanidinium-based films an order of magnitude greater than pure-methylammonium counterparts, giving rise to higher device open circuit voltages and power conversion efficiencies exceeding 17%. A reduction in defect activation energy of over 30% calculated via admittance spectroscopy and confocal fluorescence intensity mapping indicates successful passivation of recombination/trap centers at grain boundaries. We speculate that guanidinium ions serve to suppress formation of iodide vacancies and passivate under-coordinated iodine species at grain boundaries and within the bulk through their hydrogen bonding capability. These results present a simple method for suppressing nonradiative carrier loss in hybrid perovskites to further improve performances toward highly efficient solar cells.


Assuntos
Compostos de Cálcio/química , Guanidina/química , Óxidos/química , Energia Solar , Titânio/química , Fontes de Energia Elétrica , Soluções/química , Luz Solar
5.
Phys Chem Chem Phys ; 17(8): 5826-31, 2015 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-25630272

RESUMO

The phosphorescent material tris(phenylpyrazole)iridium (Ir(ppz)3) was doped into the bulk heterojunction (BHJ) layer of a 3-hexylthiophene-2,5-diyl and indene-C60 bisadduct blend to form more excitons in the triplet state. Triplet-state excitons have longer lifetimes than singlet-state excitons. Surface phase separation was determined via atomic force microscopy and the vertical distribution of various molecules was analyzed via secondary ion mass spectroscopy. Several annealing processes were applied to the BHJ layer doped with Ir(ppz)3 to investigate the thermal stability of the film. The exciton lifetime in the BHJ film was characterized using femtosecond time-reserved photoluminescence.

6.
Nat Commun ; 9(1): 1518, 2018 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-29666394

RESUMO

Multi-photon absorption and multiple exciton generation represent two separate strategies for enhancing the conversion efficiency of light into usable electric power. Targeting below-band-gap and above-band-gap energies, respectively, to date these processes have only been demonstrated independently. Here we report the combined interaction of both nonlinear processes in CsPbBr3 perovskite nanocrystals. We demonstrate nonlinear absorption over a wide range of below-band-gap excitation energies (0.5-0.8 Eg). Interestingly, we discover high-order absorption processes, deviating from the typical two-photon absorption, at specific energetic positions. These energies are associated with a strong enhancement of the photoluminescence intensity by up to 105. The analysis of the corresponding energy levels reveals that the observed phenomena can be ascribed to the resonant creation of multiple excitons via the absorption of multiple below-band-gap photons. This effect may open new pathways for the efficient conversion of optical energy, potentially also in other semiconducting materials.

7.
Science ; 361(6405): 904-908, 2018 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-30166487

RESUMO

The combination of hybrid perovskite and Cu(In,Ga)Se2 (CIGS) has the potential for realizing high-efficiency thin-film tandem solar cells because of the complementary tunable bandgaps and excellent photovoltaic properties of these materials. In tandem solar device architectures, the interconnecting layer plays a critical role in determining the overall cell performance, requiring both an effective electrical connection and high optical transparency. We used nanoscale interface engineering of the CIGS surface and a heavily doped poly[bis(4-phenyl)(2,4,6-trimethylphenyl)amine] (PTAA) hole transport layer between the subcells that preserves open-circuit voltage and enhances both the fill factor and short-circuit current. A monolithic perovskite/CIGS tandem solar cell achieved a 22.43% efficiency, and unencapsulated devices under ambient conditions maintained 88% of their initial efficiency after 500 hours of aging under continuous 1-sun illumination.

8.
Adv Mater ; : e1801117, 2018 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-29870579

RESUMO

Self-assembly of nanoscale building blocks into ordered nanoarchitectures has emerged as a simple and powerful approach for tailoring the nanoscale properties and the opportunities of using these properties for the development of novel optoelectronic nanodevices. Here, the one-pot synthesis of CsPbBr3 perovskite supercrystals (SCs) in a colloidal dispersion by ultrasonication is reported. The growth of the SCs occurs through the spontaneous self-assembly of individual nanocrystals (NCs), which form in highly concentrated solutions of precursor powders. The SCs retain the high photoluminescence (PL) efficiency of their NC subunits, however also exhibit a redshifted emission wavelength compared to that of the individual nanocubes due to interparticle electronic coupling. This redshift makes the SCs pure green emitters with PL maxima at ≈530-535 nm, while the individual nanocubes emit a cyan-green color (≈512 nm). The SCs can be used as an emissive layer in the fabrication of pure green light-emitting devices on rigid or flexible substrates. Moreover, the PL emission color is tunable across the visible range by employing a well-established halide ion exchange reaction on the obtained CsPbBr3 SCs. These results highlight the promise of perovskite SCs for light emitting applications, while providing insight into their collective optical properties.

9.
Adv Mater ; 29(4)2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27879016

RESUMO

A formamidinium(FA)-based perovskite showns superior optoelectronic properties including better stability than methylammonium-based counterparts. Pure FA-perovskite-based light-emitting diodes (LEDs) with high efficiency are reported. Interestingly, the LED clearly shows a sub-bandgap emission at 1.7 V (bandgap 2.3 eV). This important discovery provides further insights of the charge transport mechanism in perovskite-based optoelectronic devices.

10.
Adv Mater ; 29(23)2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28394472

RESUMO

Inorganic metal halide perovskite nanocrystals (NCs) have been employed universally in light-emitting applications during the past two years. Here, blue-emission (≈470 nm) Cs-based perovskite NCs are derived by directly mixing synthesized bromide and chloride nanocrystals with a weight ratio of 2:1. High-brightness blue perovskite light-emitting diodes (PeLEDs) are obtained by controlling the grain size of the perovskite films. Moreover, a white PeLED is demonstrated for the first time by blending orange polymer materials with the blue perovskite nanocrystals as the active layer. Exciton transfer from the blue nanocrystals to the orange polymers via Förster or Dexter energy transfer is analyzed through time resolved photoluminescence. By tuning the ratio between the perovskite nanocrystals and polymers, pure white light is achieved with the a CIE coordinate at (0.33,0.34).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA