Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.511
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Immunol ; 23(2): 303-317, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34949833

RESUMO

Antigen-specific memory CD4+ T cells can persist and confer rapid and efficient protection from microbial reinfection. However, the mechanisms underlying the long-term maintenance of the memory CD4+ T cell pool remain largely unknown. Here, using a mouse model of acute infection with lymphocytic choriomeningitis virus (LCMV), we found that the serine/threonine kinase complex mammalian target of rapamycin complex 2 (mTORC2) is critical for the long-term persistence of virus-specific memory CD4+ T cells. The perturbation of mTORC2 signaling at memory phase led to an enormous loss of virus-specific memory CD4+ T cells by a unique form of regulated cell death (RCD), ferroptosis. Mechanistically, mTORC2 inactivation resulted in the impaired phosphorylation of downstream AKT and GSK3ß kinases, which induced aberrant mitochondrial reactive oxygen species (ROS) accumulation and ensuing ferroptosis-causative lipid peroxidation in virus-specific memory CD4+ T cells; furthermore, the disruption of this signaling cascade also inhibited glutathione peroxidase 4 (GPX4), a major scavenger of lipid peroxidation. Thus, the mTORC2-AKT-GSK3ß axis functions as a key signaling hub to promote the longevity of virus-specific memory CD4+ T cells by preventing ferroptosis.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Ferroptose/imunologia , Memória Imunológica/imunologia , Longevidade/imunologia , Coriomeningite Linfocítica/imunologia , Vírus da Coriomeningite Linfocítica/imunologia , Alvo Mecanístico do Complexo 2 de Rapamicina/imunologia , Animais , Glicogênio Sintase Quinase 3 beta/imunologia , Peroxidação de Lipídeos/imunologia , Ativação Linfocitária/imunologia , Contagem de Linfócitos/métodos , Camundongos Endogâmicos C57BL , Proteínas Proto-Oncogênicas c-akt/imunologia
2.
Mol Cell ; 82(23): 4519-4536.e7, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36384137

RESUMO

Nutrient sensing and damage sensing are two fundamental processes in living organisms. While hyperglycemia is frequently linked to diabetes-related vulnerability to microbial infection, how body glucose levels affect innate immune responses to microbial invasion is not fully understood. Here, we surprisingly found that viral infection led to a rapid and dramatic decrease in blood glucose levels in rodents, leading to robust AMPK activation. AMPK, once activated, directly phosphorylates TBK1 at S511, which triggers IRF3 recruitment and the assembly of MAVS or STING signalosomes. Consistently, ablation or inhibition of AMPK, knockin of TBK1-S511A, or increased glucose levels compromised nucleic acid sensing, while boosting AMPK-TBK1 cascade by AICAR or TBK1-S511E knockin improves antiviral immunity substantially in various animal models. Thus, we identify TBK1 as an AMPK substrate, reveal the molecular mechanism coupling a dual sensing of glucose and nuclei acids, and report its physiological necessity in antiviral defense.


Assuntos
Proteínas Quinases Ativadas por AMP , Ácidos Nucleicos , Animais , Proteínas Quinases Ativadas por AMP/genética , Imunidade Inata , Antivirais , Glucose
3.
Circ Res ; 135(3): 434-449, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-38864216

RESUMO

BACKGROUND: Cardiac hypertrophy is an adaptive response to pressure overload aimed at maintaining cardiac function. However, prolonged hypertrophy significantly increases the risk of maladaptive cardiac remodeling and heart failure. Recent studies have implicated long noncoding RNAs in cardiac hypertrophy and cardiomyopathy, but their significance and mechanism(s) of action are not well understood. METHODS: We measured lincRNA-p21 RNA and H3K27ac levels in the hearts of dilated cardiomyopathy patients. We assessed the functional role of lincRNA-p21 in basal and surgical pressure-overload conditions using loss-of-function mice. Genome-wide transcriptome analysis revealed dysregulated genes and pathways. We labeled proteins in proximity to full-length lincRNA-p21 using a novel BioID2-based system. We immunoprecipitated lincRNA-p21-interacting proteins and performed cell fractionation, ChIP-seq (chromatin immunoprecipitation followed by sequencing), and co-immunoprecipitation to investigate molecular interactions and underlying mechanisms. We used GapmeR antisense oligonucleotides to evaluate the therapeutic potential of lincRNA-p21 inhibition in cardiac hypertrophy and associated heart failure. RESULTS: lincRNA-p21 was induced in mice and humans with cardiomyopathy. Global and cardiac-specific lincRNA-p21 knockout significantly suppressed pressure overload-induced ventricular wall thickening, stress marker elevation, and deterioration of cardiac function. Genome-wide transcriptome analysis and transcriptional network analysis revealed that lincRNA-p21 acts in trans to stimulate the NFAT/MEF2 (nuclear factor of activated T cells/myocyte enhancer factor-2) pathway. Mechanistically, lincRNA-p21 is bound to the scaffold protein KAP1 (KRAB-associated protein-1). lincRNA-p21 cardiac-specific knockout suppressed stress-induced nuclear accumulation of KAP1, and KAP1 knockdown attenuated cardiac hypertrophy and NFAT activation. KAP1 positively regulates pathological hypertrophy by physically interacting with NFATC4 to promote the overactive status of NFAT/MEF2 signaling. GapmeR antisense oligonucleotide depletion of lincRNA-p21 similarly inhibited cardiac hypertrophy and adverse remodeling, highlighting the therapeutic potential of inhibiting lincRNA-p21. CONCLUSIONS: These findings advance our understanding of the functional significance of stress-induced long noncoding RNA in cardiac hypertrophy and demonstrate the potential of lincRNA-p21 as a novel therapeutic target for cardiac hypertrophy and subsequent heart failure.


Assuntos
Cardiomegalia , Camundongos Knockout , RNA Longo não Codificante , Animais , Humanos , Masculino , Camundongos , Cardiomegalia/metabolismo , Cardiomegalia/genética , Cardiomegalia/prevenção & controle , Cardiomegalia/patologia , Cardiomiopatia Dilatada/genética , Cardiomiopatia Dilatada/metabolismo , Cardiomiopatia Dilatada/patologia , Cardiomiopatia Dilatada/prevenção & controle , Camundongos Endogâmicos C57BL , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Remodelação Ventricular
4.
J Virol ; 98(4): e0013924, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38501663

RESUMO

Swine acute diarrhea syndrome coronavirus (SADS-CoV) is a novel porcine enteric coronavirus, and the broad interspecies infection of SADS-CoV poses a potential threat to human health. This study provides experimental evidence to dissect the roles of distinct domains within the SADS-CoV spike S1 subunit in cellular entry. Specifically, we expressed the S1 and its subdomains, S1A and S1B. Cell binding and invasion inhibition assays revealed a preference for the S1B subdomain in binding to the receptors on the cell surface, and this unknown receptor is not utilized by the porcine epidemic diarrhea virus. Nanoparticle display demonstrated hemagglutination of erythrocytes from pigs, humans, and mice, linking the S1A subdomain to the binding of sialic acid (Sia) involved in virus attachment. We successfully rescued GFP-labeled SADS-CoV (rSADS-GFP) from a recombinant cDNA clone to track viral infection. Antisera raised against S1, S1A, or S1B contained highly potent neutralizing antibodies, with anti-S1B showing better efficiency in neutralizing rSADS-GFP infection compared to anti-S1A. Furthermore, depletion of heparan sulfate (HS) by heparinase treatment or pre-incubation of rSADS-GFP with HS or constituent monosaccharides could inhibit SADS-CoV entry. Finally, we demonstrated that active furin cleavage of S glycoprotein and the presence of type II transmembrane serine protease (TMPRSS2) are essential for SADS-CoV infection. These combined observations suggest that the wide cell tropism of SADS-CoV may be related to the distribution of Sia or HS on the cell surface, whereas the S1B contains the main protein receptor binding site. Specific host proteases also play important roles in facilitating SADS-CoV entry.IMPORTANCESwine acute diarrhea syndrome coronavirus (SADS-CoV) is a novel pathogen infecting piglet, and its unique genetic evolution characteristics and broad species tropism suggest the potential for cross-species transmission. The virus enters cells through its spike (S) glycoprotein. In this study, we identify the receptor binding domain on the C-terminal part of the S1 subunit (S1B) of SADS-CoV, whereas the sugar-binding domain located at the S1 N-terminal part of S1 (S1A). Sialic acid, heparan sulfate, and specific host proteases play essential roles in viral attachment and entry. The dissection of SADS-CoV S1 subunit's functional domains and identification of cellular entry cofactors will help to explore the receptors used by SADS-CoV, which may contribute to exploring the mechanisms behind cross-species transmission and host tropism.


Assuntos
Alphacoronavirus , Infecções por Coronavirus , Glicoproteína da Espícula de Coronavírus , Animais , Humanos , Camundongos , Alphacoronavirus/química , Alphacoronavirus/fisiologia , Infecções por Coronavirus/veterinária , Infecções por Coronavirus/virologia , Heparitina Sulfato , Ácido N-Acetilneuramínico/metabolismo , Peptídeo Hidrolases , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/metabolismo , Suínos
5.
Plant Physiol ; 2024 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-39276364

RESUMO

In agronomically important C4 grasses, efficient CO2 delivery to Rubisco is facilitated by NADP-malic enzyme (C4NADP-ME), which decarboxylates malate in bundle sheath cells. However, understanding the molecular regulation of the C4NADP-ME gene in sugarcane (Saccharum spp.) is hindered by its complex genetic background. Enzymatic activity assays demonstrated that decarboxylation in sugarcane Saccharum spontaneum predominantly relies on the NADP-ME pathway, similar to sorghum (Sorghum bicolor) and maize (Zea mays). Comparative genomics analysis revealed the recruitment of eight core C4 shuttle genes, including C4NADP-ME (SsC4NADP-ME2), in the C4 pathway of sugarcane. Contrasting to sorghum and maize, the expression of SsC4NADP-ME2 in sugarcane is regulated by different transcription factors (TFs). We propose a gene regulatory network for SsC4NADP-ME2, involving candidate TFs identified through gene co-expression analysis and yeast one-hybrid experiment. Among these, ABA INSENSITIVE5 (ABI5) was validated as the predominant regulator of SsC4NADP-ME2 expression, binding to a G-box within its promoter region. Interestingly, the core element ACGT within the regulatory G-box was conserved in sugarcane, sorghum, maize, and rice (Oryza sativa), suggesting an ancient regulatory code utilized in C4 photosynthesis. This study offers insights into SsC4NADP-ME2 regulation, crucial for optimizing sugarcane as a bioenergy crop.

6.
Circ Res ; 132(1): e22-e42, 2023 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-36444722

RESUMO

BACKGROUND: Excess cholesterol accumulation in lesional macrophages elicits complex responses in atherosclerosis. Epsins, a family of endocytic adaptors, fuel the progression of atherosclerosis; however, the underlying mechanism and therapeutic potential of targeting Epsins remains unknown. In this study, we determined the role of Epsins in macrophage-mediated metabolic regulation. We then developed an innovative method to therapeutically target macrophage Epsins with specially designed S2P-conjugated lipid nanoparticles, which encapsulate small-interfering RNAs to suppress Epsins. METHODS: We used single-cell RNA sequencing with our newly developed algorithm MEBOCOST (Metabolite-mediated Cell Communication Modeling by Single Cell Transcriptome) to study cell-cell communications mediated by metabolites from sender cells and sensor proteins on receiver cells. Biomedical, cellular, and molecular approaches were utilized to investigate the role of macrophage Epsins in regulating lipid metabolism and transport. We performed this study using myeloid-specific Epsin double knockout (LysM-DKO) mice and mice with a genetic reduction of ABCG1 (ATP-binding cassette subfamily G member 1; LysM-DKO-ABCG1fl/+). The nanoparticles targeting lesional macrophages were developed to encapsulate interfering RNAs to treat atherosclerosis. RESULTS: We revealed that Epsins regulate lipid metabolism and transport in atherosclerotic macrophages. Inhibiting Epsins by nanotherapy halts inflammation and accelerates atheroma resolution. Harnessing lesional macrophage-specific nanoparticle delivery of Epsin small-interfering RNAs, we showed that silencing of macrophage Epsins diminished atherosclerotic plaque size and promoted plaque regression. Mechanistically, we demonstrated that Epsins bound to CD36 to facilitate lipid uptake by enhancing CD36 endocytosis and recycling. Conversely, Epsins promoted ABCG1 degradation via lysosomes and hampered ABCG1-mediated cholesterol efflux and reverse cholesterol transport. In a LysM-DKO-ABCG1fl/+ mouse model, enhanced cholesterol efflux and reverse transport due to Epsin deficiency was suppressed by the reduction of ABCG1. CONCLUSIONS: Our findings suggest that targeting Epsins in lesional macrophages may offer therapeutic benefits for advanced atherosclerosis by reducing CD36-mediated lipid uptake and increasing ABCG1-mediated cholesterol efflux.


Assuntos
Aterosclerose , Placa Aterosclerótica , Animais , Camundongos , Placa Aterosclerótica/metabolismo , Macrófagos/metabolismo , Aterosclerose/tratamento farmacológico , Aterosclerose/genética , Aterosclerose/metabolismo , Colesterol/metabolismo , Transportador 1 de Cassete de Ligação de ATP/metabolismo
7.
Nano Lett ; 24(5): 1808-1815, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38198566

RESUMO

The novel depth-sensing system presented here revolutionizes structured light (SL) technology by employing metasurfaces and photonic crystal surface-emitting lasers (PCSELs) for efficient facial recognition in monocular depth-sensing. Unlike conventional dot projectors relying on diffractive optical elements (DOEs) and collimators, our system projects approximately 45,700 infrared dots from a compact 297-µm-dimention metasurface, drastically more spots (1.43 times) and smaller (233 times) than the DOE-based dot projector in an iPhone. With a measured field-of-view (FOV) of 158° and a 0.611° dot sampling angle, the system is lens-free and lightweight and boasts lower power consumption than vertical-cavity surface-emitting laser (VCSEL) arrays, resulting in a 5-10 times reduction in power. Utilizing a GaAs-based metasurface and a simplified optical architecture, this innovation not only addresses the drawbacks of traditional SL depth-sensing but also opens avenues for compact integration into wearable devices, offering remarkable advantages in size, power efficiency, and potential for widespread adoption.

8.
Nano Lett ; 24(33): 10055-10061, 2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39047260

RESUMO

Nonlocal metasurfaces, exemplified by resonant waveguide gratings (RWGs), spatially and angularly configure optical wavefronts through narrow-band resonant modes, unlike the broad-band and broad-angle responses of local metasurfaces. However, forward design techniques for RWGs remain constrained at lower efficiency. Here, we present a topology-optimized metasurface resonant waveguide grating (MRWG) composed of titanium dioxide on a glass substrate capable of operating simultaneously at red, yellow, green, and blue wavelengths. Through adjoint-based topology optimization, while considering nonlocal effects, we significantly enhance its diffraction efficiency, achieving numerical efficiencies up to 78% and Q-factors as high as 1362. Experimentally, we demonstrated efficiencies of up to 59% with a Q-factor of 93. Additionally, we applied our topology-optimized metasurface to color selectivity, producing vivid colors at 4 narrow-band wavelengths. Our investigation represents a significant advancement in metasurface technology, with potential applications in see-through optical combiners and augmented reality platforms.

10.
J Biol Chem ; 299(5): 104668, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37011862

RESUMO

Inhibition of heat shock protein 90 (Hsp90), a prominent molecular chaperone, effectively limits severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection but little is known about any interaction between Hsp90 and SARS-CoV-2 proteins. Here, we systematically analyzed the effects of the chaperone isoforms Hsp90α and Hsp90ß on individual SARS-CoV-2 viral proteins. Five SARS-CoV-2 proteins, namely nucleocapsid (N), membrane (M), and accessory proteins Orf3, Orf7a, and Orf7b were found to be novel clients of Hsp90ß in particular. Pharmacological inhibition of Hsp90 with 17-DMAG results in N protein proteasome-dependent degradation. Hsp90 depletion-induced N protein degradation is independent of CHIP, a ubiquitin E3 ligase previously identified for Hsp90 client proteins, but alleviated by FBXO10, an E3 ligase identified by subsequent siRNA screening. We also provide evidence that Hsp90 depletion may suppress SARS-CoV-2 assembly partially through induced M or N degradation. Additionally, we found that GSDMD-mediated pyroptotic cell death triggered by SARS-CoV-2 was mitigated by inhibition of Hsp90. These findings collectively highlight a beneficial role for targeting of Hsp90 during SARS-CoV-2 infection, directly inhibiting virion production and reducing inflammatory injury by preventing the pyroptosis that contributes to severe SARS-CoV-2 disease.


Assuntos
COVID-19 , Proteínas de Choque Térmico HSP90 , Piroptose , SARS-CoV-2 , Vírion , Humanos , COVID-19/patologia , COVID-19/fisiopatologia , COVID-19/virologia , Proteínas de Choque Térmico HSP90/metabolismo , SARS-CoV-2/química , SARS-CoV-2/crescimento & desenvolvimento , SARS-CoV-2/metabolismo , SARS-CoV-2/patogenicidade , Ubiquitina-Proteína Ligases/metabolismo , Vírion/química , Vírion/crescimento & desenvolvimento , Vírion/metabolismo , Proteínas Virais/metabolismo
11.
Mol Plant Microbe Interact ; 37(7): 583-593, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38598845

RESUMO

MicroRNAs (miRNAs) play an essential regulatory role in plant-virus interaction. However, few studies have focused on the roles of miRNAs and their targets after sugarcane mosaic virus (SCMV) infection in sugarcane. To address this issue, we conducted small RNA (sRNA) and degradome sequencing on two contrasting sugarcanes (SCMV-resistant 'Fuoguo1' [FG1] and susceptible 'Badila') infected by SCMV at five time points. A total of 1,578 miRNAs were profiled from 30 sRNA libraries, comprising 660 known miRNAs and 380 novel miRNAs. Differential expression analysis of miRNAs revealed that most were highly expressed during the SCMV exponential phase in Badila at 18 h postinfection, with expression profiles positively correlated with virus replication dynamics as observed through clustering. Analysis of degradome data indicated a higher number of differential miRNA targets in Badila compared to FG1 at 18 h postinfection. Gene ontology (GO) enrichment analysis significantly enriched the stimulus-response pathway, suggesting negative regulatory roles to SCMV resistance. Specifically, miR160 upregulated expression patterns and validated in Badila through quantitative real-time PCR (qRT-PCR) in the early stages of SCMV multiplication. Our research provides new insights into the dynamic response of plant miRNA and virus replication and contributes valuable information on the intricate interplay between miRNAs and SCMV infection dynamics. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Assuntos
Regulação da Expressão Gênica de Plantas , Sequenciamento de Nucleotídeos em Larga Escala , MicroRNAs , Doenças das Plantas , Potyvirus , RNA de Plantas , Saccharum , MicroRNAs/genética , MicroRNAs/metabolismo , Potyvirus/fisiologia , Potyvirus/genética , Doenças das Plantas/virologia , Doenças das Plantas/genética , Saccharum/virologia , Saccharum/genética , RNA de Plantas/genética , RNA de Plantas/metabolismo , Estabilidade de RNA , Resistência à Doença/genética
12.
J Cell Physiol ; 239(2): e31129, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38192063

RESUMO

Myelodysplastic syndromes (MDS) are a group of heterogeneous myeloid clonal disorders characterized by ineffective hematopoiesis. Accumulating evidence has shown that macrophages (MΦs) are important components in the regulation of tumor progression and hematopoietic stem cells (HSCs). However, the roles of bone marrow (BM) MΦs in regulating normal and malignant hematopoiesis in different clinical stages of MDS are largely unknown. Age-paired patients with lower-risk MDS (N = 15), higher-risk MDS (N = 15), de novo acute myeloid leukemia (AML) (N = 15), and healthy donors (HDs) (N = 15) were enrolled. Flow cytometry analysis showed increased pro-inflammatory monocyte subsets and a decreased classically activated (M1) MΦs/alternatively activated (M2) MΦs ratio in the BM of patients with higher-risk MDS compared to lower-risk MDS. BM MФs from patients with higher-risk MDS and AML showed impaired phagocytosis activity but increased migration compared with lower-risk MDS group. AML BM MΦs showed markedly higher S100A8/A9 levels than lower-risk MDS BM MΦs. More importantly, coculture experiments suggested that the HSC supporting abilities of BM MΦs from patients with higher-risk MDS decreased, whereas the malignant cell supporting abilities increased compared with lower-risk MDS. Gene Ontology enrichment comparing BM MΦs from lower-risk MDS and higher-risk MDS for genes was involved in hematopoiesis- and immunity-related pathways. Our results suggest that BM MΦs are involved in ineffective hematopoiesis in patients with MDS, which indicates that repairing aberrant BM MΦs may represent a promising therapeutic approach for patients with MDS.


Assuntos
Infecções , Macrófagos , Síndromes Mielodisplásicas , Humanos , Medula Óssea/patologia , Hematopoese , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patologia , Macrófagos/patologia , Síndromes Mielodisplásicas/genética , Adulto , Pessoa de Meia-Idade , Idoso , Idoso de 80 Anos ou mais , Infecções/patologia
13.
Circulation ; 148(23): 1887-1906, 2023 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-37905452

RESUMO

BACKGROUND: The importance of mitochondria in normal heart function are well recognized and recent studies have implicated changes in mitochondrial metabolism with some forms of heart disease. Previous studies demonstrated that knockdown of the mitochondrial ribosomal protein S5 (MRPS5) by small interfering RNA (siRNA) inhibits mitochondrial translation and thereby causes a mitonuclear protein imbalance. Therefore, we decided to examine the effects of MRPS5 loss and the role of these processes on cardiomyocyte proliferation. METHODS: We deleted a single allele of MRPS5 in mice and used left anterior descending coronary artery ligation surgery to induce myocardial damage in these animals. We examined cardiomyocyte proliferation and cardiac regeneration both in vivo and in vitro. Doxycycline treatment was used to inhibit protein translation. Heart function in mice was assessed by echocardiography. Quantitative real-time polymerase chain reaction and RNA sequencing were used to assess changes in transcription and chromatin immunoprecipitation (ChIP) and BioChIP were used to assess chromatin effects. Protein levels were assessed by Western blotting and cell proliferation or death by histology and terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) assays. Adeno-associated virus was used to overexpress genes. The luciferase reporter assay was used to assess promoter activity. Mitochondrial oxygen consumption rate, ATP levels, and reactive oxygen species were also analyzed. RESULTS: We determined that deletion of a single allele of MRPS5 in mice results in elevated cardiomyocyte proliferation and cardiac regeneration; this observation correlates with improved cardiac function after induction of myocardial infarction. We identified ATF4 (activating transcription factor 4) as a key regulator of the mitochondrial stress response in cardiomyocytes from Mrps5+/- mice; furthermore, ATF4 regulates Knl1 (kinetochore scaffold 1) leading to an increase in cytokinesis during cardiomyocyte proliferation. The increased cardiomyocyte proliferation observed in Mrps5+/- mice was attenuated when one allele of Atf4 was deleted genetically (Mrps5+/-/Atf4+/-), resulting in the loss in the capacity for cardiac regeneration. Either MRPS5 inhibition (or as we also demonstrate, doxycycline treatment) activate a conserved regulatory mechanism that increases the proliferation of human induced pluripotent stem cell-derived cardiomyocytes. CONCLUSIONS: These data highlight a critical role for MRPS5/ATF4 in cardiomyocytes and an exciting new avenue of study for therapies to treat myocardial injury.


Assuntos
Células-Tronco Pluripotentes Induzidas , Miócitos Cardíacos , Humanos , Camundongos , Animais , Miócitos Cardíacos/metabolismo , Doxiciclina , Células Cultivadas , Células-Tronco Pluripotentes Induzidas/metabolismo , RNA Interferente Pequeno/metabolismo , Biossíntese de Proteínas , Proliferação de Células , Regeneração , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo
14.
Circulation ; 148(1): 47-67, 2023 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-37199168

RESUMO

BACKGROUND: Activation of vascular smooth muscle cell (VSMC) inflammation is vital to initiate vascular disease. The role of human-specific long noncoding RNAs in VSMC inflammation is poorly understood. METHODS: Bulk RNA sequencing in differentiated human VSMCs revealed a novel human-specific long noncoding RNA called inflammatory MKL1 (megakaryoblastic leukemia 1) interacting long noncoding RNA (INKILN). INKILN expression was assessed in multiple in vitro and ex vivo models of VSMC phenotypic modulation as well as human atherosclerosis and abdominal aortic aneurysm. The transcriptional regulation of INKILN was verified through luciferase reporter and chromatin immunoprecipitation assays. Loss-of-function and gain-of-function studies and multiple RNA-protein and protein-protein interaction assays were used to uncover a mechanistic role of INKILN in the VSMC proinflammatory gene program. Bacterial artificial chromosome transgenic mice were used to study INKILN expression and function in ligation injury-induced neointimal formation. RESULTS: INKILN expression is downregulated in contractile VSMCs and induced in human atherosclerosis and abdominal aortic aneurysm. INKILN is transcriptionally activated by the p65 pathway, partially through a predicted NF-κB (nuclear factor kappa B) site within its proximal promoter. INKILN activates proinflammatory gene expression in cultured human VSMCs and ex vivo cultured vessels. INKILN physically interacts with and stabilizes MKL1, a key activator of VSMC inflammation through the p65/NF-κB pathway. INKILN depletion blocks interleukin-1ß-induced nuclear localization of both p65 and MKL1. Knockdown of INKILN abolishes the physical interaction between p65 and MKL1 and the luciferase activity of an NF-κB reporter. Furthermore, INKILN knockdown enhances MKL1 ubiquitination through reduced physical interaction with the deubiquitinating enzyme USP10 (ubiquitin-specific peptidase 10). INKILN is induced in injured carotid arteries and exacerbates ligation injury-induced neointimal formation in bacterial artificial chromosome transgenic mice. CONCLUSIONS: These findings elucidate an important pathway of VSMC inflammation involving an INKILN/MKL1/USP10 regulatory axis. Human bacterial artificial chromosome transgenic mice offer a novel and physiologically relevant approach for investigating human-specific long noncoding RNAs under vascular disease conditions.


Assuntos
Aneurisma da Aorta Abdominal , RNA Longo não Codificante , Animais , Humanos , Camundongos , Aneurisma da Aorta Abdominal/metabolismo , Proliferação de Células , Células Cultivadas , Inflamação/genética , Inflamação/metabolismo , Luciferases/metabolismo , Camundongos Transgênicos , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , NF-kappa B/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Ubiquitina Tiolesterase/metabolismo
15.
Plant Mol Biol ; 114(5): 91, 2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-39172289

RESUMO

Inositol 1,3,4,5,6-pentakisphosphate 2-kinase (IPK1) catalyzes the final step in phytic acid (InsP6) synthesis. In this study, the effects of OsIPK1 mutations on InsP6 synthesis, grain filling and their underlying mechanisms were investigated. Seven gRNAs were designed to disrupt the OsIPK1 gene via CRISPR/CAS9 system. Only 4 of them generated 29 individual insertion or deletion T0 plants, in which nine biallelic or heterozygous genotypes were identified. Segregation analysis revealed that OsIPK1 frameshift mutants are homozygous lethality. The biallelic and heterozygous frameshift mutants exhibited significant reduction in yield-related traits, particularly in the seed-setting rate and yield per plant. Despite a notable decline in pollen viability, the male and female gametes had comparable transmission rates to their progenies in the mutants. A significant number of the filling-aborted (FA) grains was observed in mature grains of these heterozygous frameshift mutants. These grains exhibited a nearly complete blockage of InsP6 synthesis, resulting in a pronounced increase in Pi content. In contrast, a slight decline in InsP6 content was observed in the plump grains. During the filling stage, owing to the excessive accumulation of Pi, starch synthesis was significantly impaired, and the endosperm development-specific gene expression was nearly abolished. Consistently, the activity of whereas AGPase, a key enzyme in starch synthesis, was significantly decreased and Pi transporter gene expression was upregulated in the FA grains. Taken together, these results demonstrate that OsIPK1 frameshift mutations result in excessive Pi accumulation, decreased starch synthesis, and ultimately leading to lower yields in rice.


Assuntos
Mutação da Fase de Leitura , Regulação da Expressão Gênica de Plantas , Homeostase , Oryza , Fósforo , Proteínas de Plantas , Amido , Oryza/genética , Oryza/metabolismo , Oryza/crescimento & desenvolvimento , Amido/biossíntese , Amido/metabolismo , Fósforo/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Sementes/genética , Sementes/metabolismo , Sementes/crescimento & desenvolvimento , Sistemas CRISPR-Cas , Grão Comestível/genética , Grão Comestível/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Plantas Geneticamente Modificadas , Ácido Fítico/metabolismo , Ácido Fítico/biossíntese
16.
Int J Cancer ; 154(3): 530-537, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-37815300

RESUMO

Several observational studies have reported an association between obesity and primary liver cancer (PLC), while the causality behind this association and the comparison of the risk effects of different obesity indicators on PLC remain unclear. In this study, we performed two-sample Mendelian randomization (MR) analyses to assess the associations of genetically determined liver fat, visceral adipose tissue (VAT), and body mass index (BMI) with the risk of PLC. The summary statistics of exposures were obtained from two genome-wide association studies (GWASs) based on the UK Biobank (UKB) imaging cohort and the Genetic Epidemiology Research on Adult Health and Aging (GERA) cohort. GWAS summary statistics for PLC were obtained from FinnGen consortium R7 release data, including 304 PLC cases and 218 488 controls. Inverse-variance weighted (IVW) was used as the primary analysis, and a series of sensitivity analyses were performed to further verify the robustness of these findings. IVW analysis highlighted a significant association of genetically determined liver fat (OR per SD increase: 7.14; 95% CI: 5.10-9.99; P = 2.35E-30) and VAT (OR per SD increase: 5.70; 95% CI: 1.32-24.72; P = .020) with PLC but not of BMI with PLC. The findings were further confirmed by a series of MR methods. No evidence of horizontal pleiotropy between these associations existed. Our study suggested that genetically determined liver fat and VAT rather than BMI were associated with an increased risk of PLC, which suggested that visceral fat distribution is more predictive of the clinical risk of PLC than common in vitro measures.


Assuntos
Estudo de Associação Genômica Ampla , Neoplasias Hepáticas , Adulto , Humanos , Análise da Randomização Mendeliana , Obesidade/complicações , Obesidade/genética , Neoplasias Hepáticas/etiologia , Neoplasias Hepáticas/genética , Polimorfismo de Nucleotídeo Único
17.
Small ; 20(24): e2309559, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38243884

RESUMO

Hopper-shaped microcrystals, an unusual type of crystal with a large specific surface area, are promising for use in catalysis, drug delivery, and gas sensors. In contrast to well-studied inorganic hopper-shaped crystals, organic phosphorescent concave hopper-shaped microstructures are rarely reported. This study reports the synthesis of two types of organic stepped indented hopper-shaped microstructures with efficient room temperature phosphorescence (RTP) using a liquid phase self-assembly strategy. The formation mechanism is attributed to the interfacial instability induced by the concentration gradient and selective etching. Compared with flat microstructures, the stepped indented hopper-like RTP microstructures exhibit high sensitivity to oxygen. This work also demonstrates that packing the photochromic material into the concave hopper "vessel" effectively controls the switch of phosphorescence from energy transfer, expanding the potential applications of phosphorescent materials.

18.
Planta ; 259(5): 120, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38607398

RESUMO

MAIN CONCLUSION: This study reveals miRNA indirect regulation of C4 genes in sugarcane through transcription factors, highlighting potential key regulators like SsHAM3a. C4 photosynthesis is crucial for the high productivity and biomass of sugarcane, however, the miRNA regulation of C4 genes in sugarcane remains elusive. We have identified 384 miRNAs along the leaf gradients, including 293 known miRNAs and 91 novel miRNAs. Among these, 86 unique miRNAs exhibited differential expression patterns, and we identified 3511 potential expressed targets of these differentially expressed miRNAs (DEmiRNAs). Analyses using Pearson correlation coefficient (PCC) and Gene Ontology (GO) enrichment revealed that targets of miRNAs with positive correlations are integral to chlorophyll-related photosynthetic processes. In contrast, negatively correlated pairs are primarily associated with metabolic functions. It is worth noting that no C4 genes were predicted as targets of DEmiRNAs. Our application of weighted gene co-expression network analysis (WGCNA) led to a gene regulatory network (GRN) suggesting miRNAs might indirectly regulate C4 genes via transcription factors (TFs). The GRAS TF SsHAM3a emerged as a potential regulator of C4 genes, targeted by miR171y and miR171am, and exhibiting a negative correlation with miRNA expression along the leaf gradient. This study sheds light on the complex involvement of miRNAs in regulating C4 genes, offering a foundation for future research into enhancing sugarcane's photosynthetic efficiency.


Assuntos
MicroRNAs , Saccharum , Transcriptoma/genética , Saccharum/genética , Fatores de Transcrição/genética , Redes Reguladoras de Genes , MicroRNAs/genética
19.
J Virol ; 97(2): e0194722, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36656013

RESUMO

Members of deltacoronavirus (DCoV) have mostly been identified in diverse avian species as natural reservoirs, though the porcine DCoV (PDCoV) is a major swine enteropathogenic virus with global spread. The important role of aminopeptidase N (APN) orthologues from various mammalian and avian species in PDCoV cellular entry and interspecies transmission has been revealed recently. In this study, comparative analysis indicated that three avian DCoVs, bulbul DCoV HKU11, munia DCoV HKU13, and sparrow DCoV HKU17 (Chinese strain), and PDCoV in the subgenera Buldecovirus are grouped together at whole-genome levels; however, the spike (S) glycoprotein and its S1 subunit of HKU17 are more closely related to night heron DCoV HKU19 in Herdecovirus. Nevertheless, the S1 protein of HKU11, HKU13, or HKU17 bound to or interacted with chicken APN (chAPN) or porcine APN (pAPN) by flow cytometry analysis of cell surface expression of APN and by coimmunoprecipitation in APN-overexpressing cells. Expression of chAPN or pAPN allowed entry of pseudotyped lentiviruses with the S proteins from HKU11, HKU13 and HKU17 into nonsusceptible cells and natural avian and porcine cells, which could be inhibited by the antibody against APN or anti-PDCoV-S1. APN knockdown by siRNA or knockout by CRISPR/Cas9 in chicken or swine cell lines significantly or almost completely blocked infection of these pseudoviruses. Hence, we demonstrate that HKU11, HKU13, and HKU17 with divergent S genes likely engage chAPN or pAPN to enter the cells, suggesting a potential interspecies transmission from wild birds to poultry and from birds to mammals by certain avian DCoVs. IMPORTANCE The receptor usage of avian deltacoronaviruses (DCoVs) has not been investigated thus far, though porcine deltacoronavirus (PDCoV) has been shown to utilize aminopeptidase N (APN) as a cell receptor. We report here that chicken or porcine APN also mediates cellular entry by three avian DCoV (HKU11, HKU13, and HKU17) spike pseudoviruses, and the S1 subunit of three avian DCoVs binds to APN in vitro and in the surface of avian and porcine cells. The results fill the gaps in knowledge about the avian DCoV receptor and elucidate important insights for the monitoring and prevention of potential interspecies transmission of certain avian DCoVs. In view of the diversity of DCoVs, whether this coronavirus genus will cause novel virus to emerge in other mammals from birds, are worthy of further surveillance and investigation.


Assuntos
Antígenos CD13 , Deltacoronavirus , Glicoproteína da Espícula de Coronavírus , Internalização do Vírus , Animais , Antígenos CD13/genética , Antígenos CD13/metabolismo , Galinhas/metabolismo , Infecções por Coronavirus , Deltacoronavirus/metabolismo , Suínos , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/metabolismo , Lentivirus/genética , Lentivirus/metabolismo
20.
PLoS Pathog ; 18(6): e1010620, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35696443

RESUMO

Intestinal microbial metabolites have been increasingly recognized as important regulators of enteric viral infection. However, very little information is available about which specific microbiota-derived metabolites are crucial for swine enteric coronavirus (SECoV) infection in vivo. Using swine acute diarrhea syndrome (SADS)-CoV as a model, we were able to identify a greatly altered bile acid (BA) profile in the small intestine of infected piglets by untargeted metabolomic analysis. Using a newly established ex vivo model-the stem cell-derived porcine intestinal enteroid (PIE) culture-we demonstrated that certain BAs, cholic acid (CA) in particular, enhance SADS-CoV replication by acting on PIEs at the early phase of infection. We ruled out the possibility that CA exerts an augmenting effect on viral replication through classic farnesoid X receptor or Takeda G protein-coupled receptor 5 signaling, innate immune suppression or viral attachment. BA induced multiple cellular responses including rapid changes in caveolae-mediated endocytosis, endosomal acidification and dynamics of the endosomal/lysosomal system that are critical for SADS-CoV replication. Thus, our findings shed light on how SECoVs exploit microbiome-derived metabolite BAs to swiftly establish viral infection and accelerate replication within the intestinal microenvironment.


Assuntos
Alphacoronavirus , Infecções por Coronavirus , Doenças dos Suínos , Alphacoronavirus/fisiologia , Animais , Ácidos e Sais Biliares , Cavéolas , Diarreia , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA