RESUMO
Immunotherapy approaches focusing on T cells have provided breakthroughs in treating solid tumors. However, there remains an opportunity to drive anticancer immune responses via other cell types, particularly myeloid cells. ATRC-101 was identified via a target-agnostic process evaluating antibodies produced by the plasmablast population of B cells in a patient with non-small cell lung cancer experiencing an antitumor immune response during treatment with checkpoint inhibitor therapy. Here, we describe the target, antitumor activity in preclinical models, and data supporting a mechanism of action of ATRC-101. Immunohistochemistry studies demonstrated tumor-selective binding of ATRC-101 to multiple nonautologous tumor tissues. In biochemical analyses, ATRC-101 appears to target an extracellular, tumor-specific ribonucleoprotein (RNP) complex. In syngeneic murine models, ATRC-101 demonstrated robust antitumor activity and evidence of immune memory following rechallenge of cured mice with fresh tumor cells. ATRC-101 increased the relative abundance of conventional dendritic cell (cDC) type 1 cells in the blood within 24 h of dosing, increased CD8+ T cells and natural killer cells in blood and tumor over time, decreased cDC type 2 cells in the blood, and decreased monocytic myeloid-derived suppressor cells in the tumor. Cellular stress, including that induced by chemotherapy, increased the amount of ATRC-101 target in tumor cells, and ATRC-101 combined with doxorubicin enhanced efficacy compared with either agent alone. Taken together, these data demonstrate that ATRC-101 drives tumor destruction in preclinical models by targeting a tumor-specific RNP complex leading to activation of innate and adaptive immune responses.
Assuntos
Antineoplásicos , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Neoplasias , Imunidade Adaptativa , Animais , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Humanos , Imunidade Inata , Camundongos , Neoplasias/patologiaRESUMO
Chemical fluorophores offer tremendous size and photophysical advantages over fluorescent proteins but are much more challenging to target to specific cellular proteins. Here, we used Rosetta-based computation to design a fluorophore ligase that accepts the red dye resorufin, starting from Escherichia coli lipoic acid ligase. X-ray crystallography showed that the design closely matched the experimental structure. Resorufin ligase catalyzed the site-specific and covalent attachment of resorufin to various cellular proteins genetically fused to a 13-aa recognition peptide in multiple mammalian cell lines and in primary cultured neurons. We used resorufin ligase to perform superresolution imaging of the intermediate filament protein vimentin by stimulated emission depletion and electron microscopies. This work illustrates the power of Rosetta for major redesign of enzyme specificity and introduces a tool for minimally invasive, highly specific imaging of cellular proteins by both conventional and superresolution microscopies.
Assuntos
Biologia Computacional/métodos , Corantes Fluorescentes/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Ligases/metabolismo , Oxazinas/metabolismo , Coloração e Rotulagem , Animais , Biocatálise , Células COS , Sobrevivência Celular , Chlorocebus aethiops , Cumarínicos , Cristalografia por Raios X , Células HEK293 , Células HeLa , Humanos , Imageamento Tridimensional , Microscopia Eletrônica , Modelos Moleculares , Mutagênese , Oxazinas/síntese química , Oxazinas/química , RatosRESUMO
Pathologic angiogenesis is mediated by the coordinated action of the vascular endothelial growth factor (VEGF)/vascular endothelial growth factor receptor 2 (VEGFR2) signaling axis, along with crosstalk contributed by other receptors, notably αvß3 integrin. We build on earlier work demonstrating that point mutations can be introduced into the homodimeric VEGF ligand to convert it into an antagonist through disruption of binding to one copy of VEGFR2. This inhibitor has limited potency, however, due to loss of avidity effects from bivalent VEGFR2 binding. Here, we used yeast surface display to engineer a variant with VEGFR2 binding affinity approximately 40-fold higher than the parental antagonist, and 14-fold higher than the natural bivalent VEGF ligand. Increased VEGFR2 binding affinity correlated with the ability to more effectively inhibit VEGF-mediated signaling, both in vitro and in vivo, as measured using VEGFR2 phosphorylation and Matrigel implantation assays. High affinity mutations found in this variant were then incorporated into a dual-specific antagonist that we previously designed to simultaneously bind to and inhibit VEGFR2 and αvß3 integrin. The resulting dual-specific protein bound to human and murine endothelial cells with relative affinities of 120 ± 10 pM and 360 ± 50 pM, respectively, which is at least 30-fold tighter than wild-type VEGF (3.8 ± 0.5 nM). Finally, we demonstrated that this engineered high-affinity dual-specific protein could inhibit angiogenesis in a murine corneal neovascularization model. Taken together, these data indicate that protein engineering strategies can be combined to generate unique antiangiogenic candidates for further clinical development.