Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Opt Express ; 32(3): 3316-3328, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38297556

RESUMO

Structured illumination microscopy (SIM) is a powerful technique for super-resolution (SR) image reconstruction. However, conventional SIM methods require high-contrast illumination patterns, which necessitate precision optics and highly stable light sources. To overcome these challenges, we propose a new method called contrast-robust structured illumination microscopy (CR-SIM). CR-SIM employs a deep residual neural network to enhance the quality of SIM imaging, particularly in scenarios involving low-contrast illumination stripes. The key contribution of this study is the achievement of reliable SR image reconstruction even in suboptimal illumination contrast conditions. The results of our study will benefit various scientific disciplines.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA