Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Environ Sci Technol ; 57(8): 3311-3322, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36787277

RESUMO

Byproduct formation (chlorate, bromate, organic halogen, etc.) during sulfate radical (SO4•-)-based processes like ultraviolet/peroxymonosulfate (UV/PMS) has aroused widespread concern. However, hypohalous acid (HOCl and HOBr) can form via two-electron transfer directly from PMS, thus leading to the formation of organic halogenated byproducts as well. This study found both PMS alone and UV/PMS can increase the toxicity to mammalian cells of wastewater, while the UV/H2O2 decreased the toxicity. Cytotoxicity of two wastewater samples increased from 5.6-8.3 to 15.7-29.9 mg-phenol/L, and genotoxicity increased from 2.8-3.1 to 5.8-12.8 µg 4-NQO/L after PMS treatment because of organic halogen formation. Organic halogen formation from bromide rather than chloride was found to dominate the toxicity increase. The SO4•--based process UV/PMS led to the formation of both organic halogen and inorganic bromate and chlorate. However, because of the very low concentration (<20 µg/L) and relatively low toxicity of bromate and chlorate, contributions of inorganic byproducts to toxicity increase were negligible. PMS would not form chlorate and bromate, but it generated a higher concentration of total organic halogen, thus leading to a more toxic treated wastewater than UV/PMS. UV/PMS formed less organic halogen and toxicity because of the destruction of byproducts by UV irradiation and the removal of byproduct precursors. Currently, many studies focused on the byproducts bromate and chlorate during SO4•--based oxidation processes. This work revealed that the oxidant PMS even needs more attention because it caused higher toxicity due to more organic halogen formation.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Animais , Oxidantes , Peróxido de Hidrogênio , Bromatos/toxicidade , Águas Residuárias , Cloratos , Poluentes Químicos da Água/análise , Peróxidos , Oxirredução , Halogênios , Mamíferos
3.
Sci Total Environ ; 917: 170200, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38296065

RESUMO

Ultraviolet (UV) light is widely used for wastewater disinfection. Traditional electrode-excited UV lamps, such as low-pressure mercy lamps (LPUV), encounter drawbacks like electrode aging and rapid light attenuation. A novel UV source of microwave discharge electrodeless lamp (MDEL) has aroused attention, yet its disinfection performance is unclear and still far from practical application. Here, we successfully developed a complete piece of equipment based on MDELs and achieved the application for disinfection in wastewater treatment plants (WWTPs). The light emitted by an MDEL (MWUV) shared a spectrum similar to that of LPUV, with the main emission wavelength at 254 nm. The inactivation rate of Gram-negative E. coli by MWUV reached 4.5 log at an intensity of 1.6 mW/cm2 and a dose of 20 mJ/cm2. For Gram-positive B. subtilis, an MWUV dose of 50 mJ/cm2 and a light intensity of 1.2 mW/cm2 reached an inactivation rate of 3.4 log. A higher MWUV intensity led to a better disinfection effect and a lower photoreactivation rate of E. coli. When inactivated by MWUV with an intensity of 1.2 mW/cm2 and a dose of 16 mJ/cm2, the maximum photoreactivation rate and reactivation rate constant Kmax of E. coli were 0.63 % and 0.11 % h-1 respectively. Compared with the photoreactivation, the dark repair of E. coli was insignificant. The full-scale application of the MDEL equipment was conducted in two WWTPs (10,000 m3/d and 15,000 m3/d). Generally 2-3 log inactivation rates of fecal coliforms in secondary effluent were achieved within 5-6 s contact time, and the disinfected effluent met the emission standard (1000 CFU/L). This study successfully applied MDEL for disinfection in WWTPs for the first time and demonstrated that MDEL has broad application prospects.


Assuntos
Desinfecção , Águas Residuárias , Escherichia coli , Raios Ultravioleta , Micro-Ondas
4.
Front Microbiol ; 14: 1291030, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38053552

RESUMO

The present study describes a novel method for green synthesis of silver nanoparticles using Cnidium monnieri (CM-AgNPs). Cnidium monnieri fruit is an excellent anti tinea drug that can be used externally to treat superficial fungal infections in the human body. The aqueous ethanolic extract of Cnidium monnieri fruit was prepared and employed in the synthesis of stable silver nanoparticles via biological reduction method. The synthesis conditions of CM-AgNPs was systematically optimized using Box-Behnken design. CM-AgNPs were well characterized by UV-spectroscopy and X-ray powder diffraction (XRD), and it was confirmed that the synthesized particles were AgNPs. The possible functional groups required for the reduction and stabilization of CM-AgNPs in the extract were identified through FTIR spectrum. The size of CM-AgNPs structure was confirmed to be approximately 44.6 nm in polydisperse spherical shape through scanning electron microscopy (SEM), transmission electron microscopy (TEM), and laser dynamic light scattering (DLS). Further, the minimum inhibitory concentration 90% (MIC90) ratios values of Cm-AgNPs against Trichophyton rubrum (7 d), T. mentagrophytes (7 d) and Candida albicans (24 h) were 3.125, 3.125, and 0.78125 µg/mL, respectively, determined by the broth micro dilution method. Finally, the result was concluded that the synthesized AgNPs could be further evaluated in large scale as a potential human topical antifungal agent.

5.
Chronobiol Int ; 40(7): 903-917, 2023 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-37338051

RESUMO

The circadian rhythm of blood pressure (BP) is believed to be regulated by the clock system, which is closely linked to levels of angiotensin II (Ang II). This study aimed to investigate whether Ang II mediates the proliferation of vascular smooth muscle cells (VSMCs) through the interaction between the clock system and the mitogen-activated protein kinase (MAPK) signaling pathway. Primary rat aortic VSMCs were treated with Ang II, with or without MAPK inhibitors. VSMC proliferation, expression of clock genes, CYCLIN E, and MAPK pathways were assessed. Ang II treatment resulted in increased VSMC proliferation and rapid upregulation of clock gene Periods (Pers) expression. Compared to the non-diseased control (NC) group, VSMCs incubated with Ang II displayed a noticeable delay in the G1/S phase transition and downregulation of CYCLIN E upon silencing of Per1 and Per2 genes. Importantly, silencing Per1 or Per2 in VSMCs led to decreased expression of key MAPK pathway proteins, including RAS, phosphorylated mitogen-activated protein kinase (P-MEK), and phosphorylated extracellular signal-regulated protein kinase (P-ERK). Moreover, the MEK and ERK inhibitors, U0126 and SCH772986, significantly attenuated the Ang II-induced proliferation of VSMCs, as evidenced by an increased G1/S phase transition and decreased CYCLIN E expression. The MAPK pathway plays a critical role in regulating VSMC proliferation in response to Ang II stimulation. This regulation is controlled by the expression of circadian clock genes involved in the cell cycle. These findings provide novel insights for further research on diseases associated with abnormal VSMC proliferation.


Assuntos
Ciclina E , Músculo Liso Vascular , Proteínas Circadianas Period , Animais , Ratos , Angiotensina II/farmacologia , Angiotensina II/metabolismo , Proliferação de Células , Células Cultivadas , Ritmo Circadiano , Ciclina E/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Músculo Liso Vascular/metabolismo , Fosforilação , Transdução de Sinais , Proteínas Circadianas Period/genética , Proteínas Circadianas Period/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA