Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 132
Filtrar
1.
Nano Lett ; 24(12): 3750-3758, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38488747

RESUMO

Semiconductor planar nanowire arrays (PNAs) are essential for achieving large-scale device integration. Direct heteroepitaxy of PNAs on a flat substrate is constrained by the mismatch in crystalline symmetry and lattice parameters between the substrate and epitaxial nanowires. This study presents a novel approach termed "self-competitive growth" for heteroepitaxy of CsPbBr3 PNAs on mica. The key to inducing the self-competitive growth of CsPbBr3 PNAs on mica involves restricting the nucleation of CsPbBr3 nanowires in a high-adsorption region, which is accomplished by overlaying graphite sheets on the mica surface. Theoretical calculations and experimental results demonstrate that CsPbBr3 nanowires oriented perpendicular to the boundary of the high-adsorption area exhibit greater competitiveness in intercepting the growth of nanowires in the other two directions, resulting in PNAs with a consistent orientation. Moreover, these PNAs exhibit low-threshold and stable amplified spontaneous emission under one-, two-, and three-photon excitation, indicating their potential for an integrated laser array.

2.
Nano Lett ; 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39142648

RESUMO

Threshold switching (TS) memristors are promising candidates for artificial neurons in neuromorphic systems. However, they often lack biological plausibility, typically functioning solely in an excitation mode. The absence of an inhibitory mode limits neurons' ability to synergistically process both excitatory and inhibitory synaptic signals. To address this limitation, we propose a novel memristive neuron capable of operating in both excitation and inhibition modes. The memristor's threshold voltage can be reversibly tuned using voltages of different polarities because of its bipolar TS behavior, enabling the device to function as an electronically reconfigurable bi-mode neuron. A variety of neuronal activities such as all-or-nothing behavior and tunable firing probability are mimicked under both excitatory and inhibitory stimuli. Furthermore, we develop a self-adaptive neuromorphic vision sensor based on bi-mode neurons, demonstrating effective object recognition in varied lighting conditions. Thus, our bi-mode neuron offers a versatile platform for constructing neuromorphic systems with rich functionality.

3.
Small ; : e2402786, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38966898

RESUMO

Quasi-2D perovskites exhibit impressive optoelectronic properties and hold significant promise for future light-emitting devices. However, the efficiency of perovskite light-emitting diodes (PeLEDs) is seriously limited by defect-induced nonradiative recombination and imbalanced charge injection. Here, the defect states are passivated and charge injection balance is effectively improved by introducing the additive cyclohexanemethylammonium (CHMA) to bromide-based Dion-Jacobson (D-J) structure quasi-2D perovskite emission layer. CHMA participates in the crystallization of perovskite, leading to high quality film composed of compact and well-contacted grains with enhanced hole transportation and less defects. As a result, the corresponding PeLEDs exhibit stable pure blue emission at 466 nm with a maximum external quantum efficiency (EQE) of 9.22%. According to current knowledge, this represents the highest EQE reported for pure-blue PeLEDs based on quasi-2D bromide perovskite thin films. These findings underscore the potential of quasi-2D perovskites for advanced light-emitting devices and pave the way for further advancements in PeLEDs.

4.
Langmuir ; 40(10): 5348-5359, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38408346

RESUMO

The challenge of removing trace levels of heavy metal ions, particularly uranium, from wastewater is a critical concern in environmental management. Uranium, a key element in long-term nuclear power generation, often poses significant extraction difficulties in wastewater due to its low concentration, interference from other ions, and the complexity of aquatic ecosystems. This study introduces an anodic electrodeposited hierarchical porous 2D metal-organic framework (MOF) Cu-BDC-NH2@graphene oxide (GO) membrane for effective uranium extraction by mimicking the function of the superb-uranyl-binding protein. This membrane is characterized by its hierarchical pillared-layer structures resulting from the controlled orientation of Cu-BDC-NH2 MOFs within the laminated GO layers during the electrodeposition process. The integration of amino groups from 2D Cu-BDC-NH2 and carboxylate groups from GO enables a high affinity to uranyl ions, achieving an unprecedented uranium adsorption capacity of 1078.4 mg/g and outstanding selectivity. Our findings not only demonstrate a breakthrough in uranium extraction technology but also pave the way for advancements in water purification and sustainable energy development, proposing a practical and efficient strategy for creating orientation-tunable 2D MOFs@GO membranes tailored for high-efficiency uranium extraction.

5.
Langmuir ; 40(8): 4424-4433, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38368593

RESUMO

To develop versatile photocatalysts for efficient degradation of distinct organic pollutants in water is a continuous pursuit in environment remediation. Herein, we directly oxidize Ti3C2 MXene with hydrogen peroxide to produce C-doped anatase TiO2 nanowires with aggregates maintaining a layered architecture of the MXene. The Ti3C2 MXene provides a titanium source for TiO2, a carbon source for in situ C-doping, and templates for nanowire aggregates. Under UV light illumination, the optimized Ti3C2/TiO2 exhibits a reaction rate constant 1.5 times that of the benchmark P25 TiO2 nanoparticles, toward photocatalytic degradations of trace phenol in water. The mechanism study suggests that photogenerated holes play key roles on the phenol degradation, either directly oxidizing phenol molecules or in an indirect way through oxidizing first the surface hydroxyl groups. The unreacted Ti3C2 MXene, although with trace amounts, is supposed to facilitate electron transfer, which inhibits charge recombination. The unique nanostructure of layered aggregates of nanowires, abundant surface oxygen vacancies arising from the carbon doping, and probably the Ti3C2/TiO2 heterojunction guarantee the high photocatalytic efficiency toward removals of organic pollutants in water. The photocatalyst also exhibits an activity superior to, or at least comparable to, the benchmark P25 TiO2 toward photodegradations for typical persistent organic pollutants of phenol, dye molecule of rhodamine B, antibiotic of tetracycline, pharmaceutical wastewater of ofloxacin, and pesticide of N,N-dimethylformamide, when evaluated in total organic carbon removal.

6.
Langmuir ; 40(23): 12097-12106, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38814133

RESUMO

Antimony sulfide (Sb2S3) has been recognized as a catalytic material for splitting water by solar energy because of its suitable narrow band gap, high absorption coefficient, and abundance of elements. However, many deep-level defects in Sb2S3 result in a significant recombination of photoexcited electron-hole pairs, weakening its photoelectrochemical performance. Here, by using a simple hydrothermal and spin-coating method, we fabricated a step-scheme heterojunction of Sb2S3/α-Fe2O3 to improve the photoelectrochemical performance of pure Sb2S3. Our Sb2S3/α-Fe2O3 photoanode has a photocurrent density of 1.18 mA/cm2 at 1.23 V vs reversible hydrogen electrode, 1.39 times higher than that of Sb2S3 (0.84 mA/cm2). In addition, our heterojunction has a lower onset potential, a higher absorbance intensity, a higher incident photon-to-current conversion efficiency, a higher applied bias photon-to-current efficiency, and a lower charge transfer resistance compared to pure Sb2S3. Based on ultraviolet photoelectron spectroscopy, we constructed a step-scheme band structure of Sb2S3/α-Fe2O3 to explain its photoelectrochemical enhancement. This work offers a promising strategy to optimize the performance of Sb2S3 photoelectrodes for solar-driven photoelectrochemical water splitting.

7.
Angew Chem Int Ed Engl ; 63(11): e202318777, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38258990

RESUMO

High-performance pure red perovskite light-emitting diodes (PeLEDs) with an emission wavelength shorter than 650 nm are ideal for wide-color-gamut displays, yet remain an unprecedented challenge to progress. Mixed-halide CsPb(Br/I)3 emitter-based PeLEDs suffer spectral stability induced by halide phase segregation and CsPbI3 quantum dots (QDs) suffer from a compromise between emission wavelength and electroluminescence efficiency. Here, we demonstrate efficient pure red PeLEDs with an emission centered at 638 nm based on PbClx -modified CsPbI3 QDs. A nucleophilic reaction that releases chloride ions and manipulates the ligand equilibrium of the colloidal system is developed to synthesize the pure red emission QDs. The comprehensive structural and spectroscopic characterizations evidence the formation of PbClx outside the CsPbI3 QDs, which regulates exciton recombination and prevents the exciton from dissociation induced by surface defects. In consequence, PeLEDs based on PbClx -modified CsPbI3 QDs with superior optoelectronic properties demonstrate stable electroluminescence spectra at high driving voltages, a record external quantum efficiency of 26.1 %, optimal efficiency roll-off of 16.0 % at 1000 cd m-2 , and a half lifetime of 7.5 hours at 100 cd m-2 , representing the state-of-the-art pure red PeLEDs. This work provides new insight into constructing the carrier-confined structure on perovskite QDs for high-performance PeLEDs.

8.
Small ; 19(18): e2207559, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36725315

RESUMO

Ion-selective membranes are considered as the promising candidates for osmotic energy harvesting. However, the fabrication of highly perm-selective membrane is the major challenge. Metal-organic frameworks (MOFs) with well-defined nanochannels along functional charged groups show great importance to tackle this problem. Here, a series of dense sodium polystyrene sulfonate (PSS) incorporated MOFs composite membranes (PSS@MOFs) on a porous anodic aluminum oxide (AAO) membrane via in situ anodic electrodeposition process are developed. Benefiting to the novel structural design of the confined Ag layer, PSS@MOFs dense composite membrane with less defects formed. The sulfonated nanochannels of the PSS@MOFs composite membrane provided rapid and selective transport of cations due to the enhanced electrostatic interaction between the permeating ions and MOFs. While osmotic energy conversion, 860 nm thick negatively charged PSS@MOFs composite membrane achieves an ultrahigh cation transfer number of 0.993 and energy conversion efficiency of 48.8% at a 100-fold salinity gradient. Moreover, a large output power of 2.90 µW has been achieved with an ultra-low internal resistance of 999 Ω, employing an effective area of 12.56 mm2 . This work presents a promising strategy to construct a high-performance MOFs-based osmotic energy harvesting system for practical applications.

9.
Langmuir ; 39(29): 10178-10188, 2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37439034

RESUMO

Pt-decorated In2O3 hollow microspheres were prepared using a template and reflux method. The size of the prepared carbon templates was adjusted from 200 nm to 1.3 µm by introducing chloroplatinic acid during the hydrothermal process. At the same time, Pt nanoparticles inside the carbon layer were protected from oxidation and agglomeration. Also, the folds created on the surface of the hollow sphere during shrinkage led to a substantial increase in specific surface area. The response of the In2O3-based sensor toward acetone was significantly enhanced by the addition of Pt decoration. This improvement can be attributed to the increased availability of active sites for the target gas and the consequential alteration of the energy band structure. In addition, high response sensitivity, rapid dynamic processes, long-term reliability, and selectivity have all been achieved. The detectable limit is less than 1 ppm, which might satisfy the 1.8 ppm threshold value in the exhaled breath of patients with diabetes. Consequently, the proposed sensor has great sensitivity and can detect low-concentration of acetone, making it an ideal choice for applications such as monitoring daily dietary intake, managing diabetes, and inspecting industrial production processes.

10.
Small ; 18(14): e2108026, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35388646

RESUMO

Amid the burgeoning environmental concerns, electrochemical energy storage is of great demand, inspiring the rapid development of electrolytes. Quasi-liquid solid electrolytes (QLSEs) demonstrate exciting properties that combine high ionic conductivity and safety. Herein, a QLSE system is constructed by confining ionic liquids (ILs) into 2D materials-based membranes, which creates a subtle platform for the investigation of the nanoconfined ion transport process. The highest ionic conductivity increment of 506% can be observed when ILs are under nanoconfinement. Correlation of experimental results and simulation evidently prove the diffusion behaviors of ILs are remarkably accelerated when confined in nanochannels, ascribing from the promoted dissociation of ILs. Concurrently, nanoconfined ILs demonstrate a highly ordered distribution, lower interplay, and higher free volume compared against bulk systems. This work reveals and analyzes the phenomenon of ionic conductivity elevation in nanoconfined ILs, and offers inspiring opportunities to fabricate the highly stable and efficient QLSEs based on layered nanomaterials for energy storage applications.

11.
Nanotechnology ; 34(7)2022 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-36379053

RESUMO

It is a significant issue for environmental protection and industrial production to eliminate CO, a gas harmful to life and some important reaction sites. Real environmental conditions require catalytic CO oxidation to occur at relatively low temperature. Nowadays, photothermal catalysis has been exploited as a new way to achieve CO elimination, different from thermal catalysis. CuO, as cheap and abundant substitute for precious metals, is considered to have potential in photothermal catalysis. Oxygen vacancies (OV) and lattice oxygen (OL) activity are considered extremely crucial for oxide catalysts in CO oxidation, according to Mars-van Krevelen mechanism. Herein, porous CuO nanoplates with adjustable OVand OLactivity were prepared by a facile method via controlling the morphology and phase composition of precursors. The light-off temperature (50% conversion) of the best sample obtained under the optimal conditions was ∼110 °C and an almost complete conversion was reached at ∼150 °C. It also achieved nearly 70% conversion under 6 standard Suns (6 kW cm-2irradiation) and could work in infrared radiation (IR) regions, which could be attributed to the photo-induced thermal effect and activation effect. The simple synthesis and characterization provide a good example for the future photothermal catalysis.

12.
Chem Soc Rev ; 50(22): 12702-12743, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34643198

RESUMO

The rapid development of portable/wearable electronics proposes new demands for energy storage devices, which are flexibility, smart functions and long-time outdoor operation. Supercapacitors (SCs) show great potential in portable/wearable applications, and the recently developed flexible, smart and self-sustainable supercapacitors greatly meet the above demands. In these supercapacitors, conductive polymers (CPs) are widely applied due to their high flexibility, conductivity, pseudo-capacitance, smart characteristics and moderate preparation conditions. Herein, we'd like to introduce the CP-based flexible, smart and self-sustainable supercapacitors for portable/wearable electronics. This review first summarizes the flexible SCs based on CPs and their composites with carbon materials and metal compounds. The smart supercapacitors, i.e., electrochromic, electrochemical actuated, stretchable, self-healing and stimuli-sensitive ones, are then presented. The self-sustainable SCs which integrate SC units with energy-harvesting units in one compact configuration are also introduced. The last section highlights some current challenges and future perspectives of this thriving field.

13.
Small ; 17(39): e2103169, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34418298

RESUMO

Solution-processed all-inorganic CsPbX3 perovskites exhibit outstanding optoelectronic properties and are being considered as a promising optical gain medium, with impressive performance in the green and red region. However, the development of CsPbX3 for blue emission is still lagging far behind, owing to difficulties in thin films synthesis and spectral instability subject to light irradiation. Here, a facile vapor anion exchange (VAE) method that enables preparation of blue-emitting perovskite films with both excellent surface morphology and good photo-stability is reported. The mixed-Br/Cl quasi-2D perovskite films show spectrally stable pure blue emission (471 nm) under continuous-wave laser irradiation with power density as high as 81 W cm-2 . Furthermore, optically pumped blue amplified spontaneous emission (ASE) is realized based on the mixed-Br/Cl perovskite films. By changing the duration of VAE treatment, the ASE peak can be tuned from 537 nm down to 475 nm. This work not only presents a facile method to prepare high quality mixed halide Cs-based perovskite films, but also pave the way for further exploration of stable blue perovskite lasing.

14.
Langmuir ; 37(11): 3321-3330, 2021 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-33705134

RESUMO

Nowadays, transition-metal phosphides have been reported to function well in photocatalytic water splitting and possess great potential to substitute traditional noble-metal cocatalysts in the future. Herein, p-type cobalt phosphide (CoP-Co2P) nanomaterials were synthesized by phosphating the solvothermally prepared Co(OH)2 nanoflowers at a low temperature (300 °C). Then, we combined the phosphides with commercial TiO2 through facile mechanical mixing to fabricate a useful noble-metal-free photocatalyst. The phosphating time that had an influence on the composition of phosphides was tuned, and 3 h was an ideal condition after comparison. The cobalt phosphide-modified TiO2 at the optimal weight percentage (nominal 0.5%) exhibited the highest photocatalytic hydrogen rate of approximately 824.5 µmol g-1 h-1 under simulated sunlight irradiation, which was nearly equal to 160 times that of bare TiO2 and 1.7 times that of single CoP-modified TiO2. The CoPx/TiO2 heterojunction interfaces were studied using photoluminescence (PL), time-resolved PL, and photoelectrochemical methods, which revealed that the effective charge separation and transfer accelerated by the built-in electric field of p-n junction contributed significantly to the photocatalytic performance.

15.
Nanotechnology ; 31(9): 095406, 2020 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-31829980

RESUMO

Plasmonic noble metal has been applied in photocatalytic materials, and TiO2 with plasmonic noble metal has been studied for a long time. In this work, we have fabricated incomplete covered Au/Ag alloy nanoshuttle-TiO2 nanomaterials with 268.7 µmol g-1 h-1 H2-evolution in a simple solution method. The considerable photocatalytic performance is mainly due to the enhanced surface plasmon resonance effect of Au/Ag alloy nanoshuttles. It has been found that TiO2 clusters attached to the Au/Ag nanoshuttles surface migrate under electrons irradiation and cover the exposed Au/Ag NS surface to achieve thermodynamic stability, which results in instability of photocatalytic performance. The mechanism has been discussed in detail.

16.
Nanotechnology ; 31(47): 475406, 2020 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-32570221

RESUMO

Graphitic carbon nitride (g-C3N4) has been regarded as an intriguing photocatalyst applying to hydrogen generation but suffering rapid recombination of photoinduced electron-hole pairs and insufficient absorption under visible light. We developed a novel one-pot thermal copolymerization method of melamine as a precursor and 7,7,8,8-tetracyanoquinodimethane (TCNQ) as a comonomer to synthesize modified g-C3N4 (abbreviated as X% TCNQ) for the first time, aiming to directly incorporate TCNQ molecular into carbon nitride skeleton for the substitution of low-electronegative carbon for high-electronegative nitride atom. Results revealed that the as-prepared photocatalysts by copolymerization of melamine with TCNQ retained the original framework of g-C3N4, and dramatically altered the electronic and optical properties of carbon nitride. Various measurements confirmed that as-synthesized samples exhibited larger specific surface areas, faster photogenerated charge transfer and broader optical absorption by decreasing the π-deficiency and extending the π-conjugated system, thus facilitating the photocatalytic activity. Specifically, the 0.3% TCNQ exhibited as high as seven times than the pristine g-C3N4 on photocatalytic H2 generation and kept its photoactivity for five circles. This work highlights a feasible approach of chemical protocols for the molecular design to synthesize functional carbon nitride photocatalysts by copolymerizing appropriate g-C3N4 precursor and comonomers.

17.
Opt Lett ; 44(7): 1576-1579, 2019 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-30933094

RESUMO

Understanding of the carrier concentration properties of current spreading layers in LED devices is important although difficult to achieve. Here, we present a solution to determine the carrier concentration for current spreading layers in ZnO-based LEDs, based on Raman spectroscopy. Raman spectra and lineshape fitting indicate a hole concentration below 1×1018 cm-3 in the p-type region and an electron concentration of 1.21×1019 cm-3 in n-type. The results from Raman spectroscopy are further qualitatively confirmed by the electroluminescence spectrum and device simulation, which demonstrates its possible application in carrier concentration assessment in multilayered structures.

18.
Langmuir ; 35(3): 779-786, 2019 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-30601001

RESUMO

In this work, g-C3N4@TiO2 nanostructures with hollow sphere morphology, small grain size, high crystalline quality, and high surface area are successfully synthesized by the annealing method using melamine and hollowsphere precursor, which could be a universal method to synthesis hollow sphere nanoheterojunction. Excellent photocatalytic property was observed from the as-prepared g-C3N4@TiO2 nanostructure with 466.43 µmol·g-1·h-1 hydrogen generation rate under visible light irradiation (>420 nm), which was 5.5 times as much as the control couple, nanoparticle nanoheterojunction g-C3N4@TiO2. No apparent deactivation was found during the follow-up cycle performance test. The special morphology and the heterojunction construction contribute to both visible light absorption and photogenerated electron-hole pair separation efficiency and finally to the photocatalytic property. The content of g-C3N4 was proved to be an important parameter for the promotion of the photocatalytic property. Overlarge content may lead to lower photogenerated electron-hole pair separation efficiency.

19.
Phys Chem Chem Phys ; 21(39): 21996-22001, 2019 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-31553029

RESUMO

Solution-processed all-inorganic CsPbX3(X = Br, I, and Cl) perovskites are proven to be promising materials for various optoelectronic applications. However, CsPbX3 films as optical gain media were confronted with unsatisfactory surface coverage and inferior photoluminescence performance when compared with their colloidal nanocrystal counterparts. Herein, we demonstrate a strategy for improving the optical properties via modification of both top and bottom surfaces of CsPbBr3 films. The treated perovskite films show ultra-smooth morphology and a carrier lifetime of 44 ns, more than one order of magnitude longer than the untreated one. Meanwhile, a mixed polymer layer on the top of the perovskite film could combine surface passivation with symmetric waveguide effects, leading to an outstanding net gain coefficient of 694 cm-1. These merits predict the great potential of all-inorganic perovskite films to support high efficiency charge transport or stimulated emission.

20.
Opt Lett ; 43(10): 2288-2291, 2018 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-29762574

RESUMO

Non-polar ZnO thin films are grown on m-plane sapphire substrates by plasma-assisted molecular beam epitaxy. Emission enhancement from non-polar ZnO thin films coated with Al/AlOx has been studied by photoluminescence spectroscopy. AlOx has been used to mediate the surface plasmon (SP) energy of Al nanoparticles. Taking advantage of the resonant coupling between the UV emission of non-polar ZnO film and Al nanoparticle SPs, an 84-fold enhancement of the UV emission and an 8.3-fold enhancement of internal quantum efficiency (ηint) have been achieved under the optimized sputtering time and energy of SPs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA