RESUMO
RATIONALE: There is increasing evidence for the presence of autoantibodies in chronic obstructive pulmonary disease (COPD). Chronic oxidative stress is an essential component in COPD pathogenesis and can lead to increased levels of highly reactive carbonyls in the lung, which could result in the formation of highly immunogenic carbonyl adducts on "self" proteins. OBJECTIVES: To determine the presence of autoantibodies to carbonyl-modified protein in patients with COPD and in a murine model of chronic ozone exposure. To assess the extent of activated immune responses toward carbonyl-modified proteins. METHODS: Blood and peripheral lung were taken from patients with COPD, age-matched smokers, and nonsmokers with normal lung function, as well as patients with severe persistent asthma. Mice were exposed to ambient air or ozone for 6 weeks. Antibody titers were measured by ELISA, activated compliment deposition by immunohistochemistry, and cellular activation by ELISA and fluorescence-activated cell sorter. MEASUREMENTS AND MAIN RESULTS: Antibody titer against carbonyl-modified self-protein was significantly increased in patients with Global Initiative for Chronic Obstructive Lung Disease stage III COPD compared with control subjects. Antibody levels inversely correlated with disease severity and showed a prevalence toward an IgG1 isotype. Deposition of activated complement in the vessels of COPD lung as well as autoantibodies against endothelial cells were also observed. Ozone-exposed mice similarly exhibited increased antibody titers to carbonyl-modified protein, as well as activated antigen-presenting cells in lung tissue and splenocytes sensitized to activation by carbonyl-modified protein. CONCLUSIONS: Carbonyl-modified proteins, arising as a result of oxidative stress, promote antibody production, providing a link by which oxidative stress could drive an autoimmune response in COPD.
Assuntos
Autoanticorpos/metabolismo , Estresse Oxidativo/imunologia , Carbonilação Proteica/imunologia , Doença Pulmonar Obstrutiva Crônica/imunologia , Idoso , Animais , Asma/imunologia , Autoanticorpos/sangue , Estudos de Casos e Controles , Feminino , Humanos , Masculino , Análise por Pareamento , Camundongos , Camundongos Endogâmicos BALB C , Pessoa de Meia-Idade , Ozônio , Doença Pulmonar Obstrutiva Crônica/patologia , Mucosa Respiratória/patologia , Índice de Gravidade de Doença , Fumar/efeitos adversosRESUMO
COPD is a disease of innate immunity and bacterial infections are a dominant cause of exacerbations in the later stages resulting in poor health and high mortality. The pathogen-associated molecular pattern (PAMP) lipopolysaccharide (LPS) is sensed by immune cells through activation of the toll-like receptor 4 (TLR4). This leads to the activation of NADPH oxidase (NOX) and NF-κB which together drive COPD inflammation. In this study we show in human PBMCs that LPS stimulated proinflammatory cytokine release (CXCL8 and IL6) was inhibited by approximately 50% by the broad specificity phosphatidylinositol 3-kinase (PI3K) inhibitor, wortmannin. Our results also demonstrate that activation of PI3K following LPS stimulation is mediated by a NOX4 dependent mechanism releasing endogenous H2O2, as the NOX4 inhibitor apocynin blocked LPS induced AKT phosphorylation. Moreover, LPS-induced PI3K activation was inhibited by the anti-oxidant N-acetylcysteine in a concentration dependent manner (IC50 ~100 µM). In addition, our data demonstrated that inhibition of small G proteins, by pre-treatment with pertussis toxin, inhibited LPS-induced AKT phosphorylation. Furthermore, the G-protein inhibitors pertussis toxin and mastoparan both inhibited LPS-induced CXCL8 and IL-6 release by approximately 50%. Together, these data indicate there is a mechanism in human PBMCs where TLR4 activation by LPS leads to ROS generation through NOX4 and activation of the PI3K pathway. This effect is apparently mediated through small G proteins facilitating the release of pro-inflammatory cytokines.